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REVOLUTIONIZING MATRIX ISOMORPHISMS OF COMPLEX  

CLIFFORD ALGEBRAS THROUGH CANTOR SET  
  

    

Çelik D, Koçak Ş. A  
Department of Mathematics, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey  

Abstract: The study of complex Clifford algebras and their representations plays a significant role in 

determining the geometric and topological structures of manifolds. This article presents a novel approach for 

obtaining the standard isomorphisms of complex Clifford algebras using the Cantor set. Specifically, the 

article constructs a representation for even complex Clifford algebra Cl2n using a specific 2n-element subset 

derived from the Cantor set, where Vn denotes the set of left endpoints. By constructing an algebra 

homomorphism from Cl2n to B(Fn) and a base for the representation space Fn, the matrix of any Clifford 

generator's image under this representation is found to emerge as the tensor product of standard Pauli matrices. 

Additionally, the article introduces tilt and switch operators on Fn, similar to those used to represent infinite 

dimensional complex Clifford algebra, for construction purposes. Overall, this new method provides a useful 

tool for further exploration and understanding of complex Clifford algebras.  
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Introduction  
Clifford algebras (also known as “geometric algebras”) are introduced (1878) by W. K. Clifford as a 

generalization of Grassmann algebras, complex numbers, and quaternions. In the area of mathematical 

physics, the representations of Clifford algebras are important for determining the topological and geometric 

structures of manifolds [8].  

The idea that the Clifford algebras could be represented on fractals is discussed in the paper [7], where the 

envisaged representation of Clifford algebras is undertaken via Cuntz algebras (For representations of Cuntz 

algebras on fractals, see also [9]). In [2, 3], the authors give a direct realization for this pretty idea of 

representing Clifford algebras on fractals, without any use of Cuntz algebras. They represent the infinite 

dimensional complex  

Clifford algebra Cl∞ on L2K which is the complex Hilbert space of square integrable, complex valued 

functions on K, where K is the Cantor set.  

In this note, we first present a representation for even complex Clifford algebra Cl2n using a special 2nelement 

subset of the Cantor set, by the analogue of the representation for infinite-dimensional case [3]. Next, we show 

that the matrix for any image of the standard Clifford generator under this representation emerges as the tensor 

product of the standard Pauli matrices with respect to a suitable base of the representation space.  

In the case of the odd dimension, we can see easily from [7].  

We will consider a special finite subset of K, which is the attractor of the iterated functions system on  

R consisting of the functions φ0 and φ1 such that  , with 2n elements. Let Vn denote 

the set of left endpoints of the nth stage of K. The first three sets of endpoints illustrated in Figure 1 are as  
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Note that these endpoints are obtained by applying the transformations φ0 and φ1 to the point x = 0, 

successively. Thus, the first two sets V1 and V2 are also written as follows:  

  V1 = {φ0(0),φ1(0)}  

  V2 = {φ0(φ0(0)),φ0(φ1(0)),φ1(φ0(0)),φ1(φ1(0))}  

We denote the set of complex-valued functions on Vn by Fn and algebra of bounded linear operators on Fn by 

B(Fn). In our representation, we will construct an algebra homomorphism from Cl2n to B(Fn).  

The rest of this paper is organized as follows. In Section 2, we will introduce special transformations that will 

be used in the construction of our representation, which we will call the tilt and switch operators here and 

illustrate their geometric behaviour with some examples. In Section 3, we will present our representation for 

Cl2n,n  N+. In that section, we will also construct a base for the representation space Fn by using symbolic 

notations of the elements of Vn and determine the matrix of any Clifford generator’s image under the 

representation with respect to this base constructed.  

1.  Tilt and switch operators on Fn  

In [3], tilt and switch operators on L2K, which are used to represent infinite dimensional complex Clifford 

algebra, were defined. We will define similar operators on Fn which will be used to construct the representation 

of Cl2n and call them tilt and switch operators too. We use the symbolic dynamics of these endpoints in Vn to 

describe these transformations. For any element x in Vn, it has unique address which are finite words ω1ω2  

...ωn such that  

x = φω1ω2...ωn(0) = (φω1 ◦ φω2 ◦ ··· ◦ φωn)(0),  

where each of the letters ωi belongs to {0,1} (See [1] and [6] for symbolic dynamics of the points of an  

attractor.)  

We identify a point x  Vn with its address ω1ω2 ...ωn and write x = ω1ω2 ...ωn. For some fixed n and for all 1 

≤ j ≤ n,j  N, one can decompose Vn with respect to the address-letter at a specific slot j:  

Vnj,0 := {x  Vn | x = ω1ω2 ···ωj−10ωj+1 ···ωn} and  

Vnj,1 := {x  Vn | x = ω1ω2 ···ωj−11ωj+1 ···ωn} with  

Vn = Vnj,0  Vnj,1.  

Now we define the operators Tj and Sj,j = 1,2,...,n on Fn for n  N+. For a given f  Fn, Tjf and Sjf are defined 

as follows:  

( j )( ) =− (x  ,,  xx  VVnnj,j,10  

  f ) and  

(Sjf)(x) = f(x˜j) for x = 

ω1ω2 ...ωn  Vn, where  

 ,  for ωj = 1  

˜ =  

  ω1ω2 ...ωj−11ωj+1 ...ωn  ,  for ωj = 0.  

follows:   

  
  V 1   :   b   b   

  0     

  V 2   :   b   b   b   b   

  0         

  V 3   :   b   b   b   b   b   b   b   b   

  0           

Figure 1 . The finite subsets of the Cantor set  V 1 ,V 2 , and  V 3 .   
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Tj ’s are the “tilt” operators as they tilt the portion of the graph on Vn
j,1, and Sj ’s are the “switch” operators as 

they switch the portions of graphs on Vn
j,0 and Vn

j,1 like the tilt and switch operators defined on L2K in [3]. 

We note that as n changes, the tilt and stitch operators will also be different, as the domains will change. We 

write Tj and Sj without n in order not to cause indices confusion.  

Example 2.1 Let a function f on V2 be given as in Figure 2. We illustrate T1(f), S1(f), T2(f), and S2(f) as in 

Figures 3–6, respectively. Note that the elements in V2 have been shown with their address representations.  

 
 

 

Figure 3. The graph of T1f .  
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Figure 2 . The graph of  f  on  V 2 .   
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Figure 6. The graph of S2f .  

We now give a lemma about commutation properties of tilt and switch operators on Fn.  

Lemma 2.2 For a fixed integer n ≥ 1 and p,q  N,1 ≤ p,q ≤ n, the following equalities hold:  

i)  TpTq = TqTp ii) 

 SpSq = SqSp iii)  TpSq = SqTp (p =6 

 q) iv)  TpSp = −SpTp  

Proof Let f  Fn be given. Then,  

i)  

 , x  Vnp,0  

(2.1)  

 , x  Vnp,1  

 Vnp,0 and Vnq,0  

 Vnp,0 and Vnq,1  

(2.2)  

 Vnp,1 and Vnq,0  

 Vnp,1 and Vnq,1  

(TpTq)(f)(x) has the same explicit expression.  

  q  p  

ii) (SpSq)(f)(x) = (Sqf)(x˜p) = f((gx˜p) ) = f((gx˜q) ) = (Spf)(x˜q) = (SqSp)(f)(x).  

iii)  

  ,   x  

  ,   x  

  ,   x  

  ,   x  
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(TpSq)(f)(x)  =   ,, 

xx    VVnnp,p,10   (2.3)  

 ,x  Vnp,p,10  (2.4)  

  , x  Vn  

 For p =6q, we have x  Vn
p,0  x˜q  Vn

p,0 and x  Vn
p,1   x˜q  Vn

p,1. Hence, we can write:  

,  x˜qq  VVnnp,p,10 (2.5) (TpSq)(f)(x)  =  ,  x˜  

(2.6)  

  = (SqTp)(f)(x).  (2.7) iv)  

  (SpTp)(f)(x)  = 

  ( (2.8)  

 ,x˜pp  VVnnp,p,10  (2.9)  

 , x˜  

 ,x  Vnp,p,10  (2.10)  

  , x  Vn  

,  x  Vnp,p,01 (2.11) , x  Vn  

  . 

  (2.12)  

2  

2.  Representations of complex Clifford algebras on Fn  

It is well known that the structures of finite-dimensional real and complex Clifford algebras for a 

nondegenerate quadratic form have been completely classified [4]. In this section, we construct representation 

for complex Clifford algebra in even dimension via tilt and switch operators and show that the matrix 

representation of every Clifford generator is the form of the tensor product of the Pauli matrices.  

Let us denote the generators of the complex Clifford algebra Cl2n by ej (j = 1,2,...,2n) with ej
2 = 1 and ejek = 

−ekej for j =6 k. We map these generators in the following way into B(Fn):  

ψ2n :  e1  e27→ T1  (3.1)  

(1 < k ≤ n)  e2k−1 7→... S1  

where i is the imaginary unit.  e2k  7 7→  

→ ,  

Theorem 3.1 ψ2n, defined above, induces an algebra homomorphism from Cl2n to B(Fn), i.e. a representation 

of Cl2n on Fn.  

Proof  
  For all 1 ≤ p,q ≤ 2n, p =6q, we have to check that both  

(ψ2n(ep))
2 = I  

and ψ2n(ep)ψ2n(eq) = 

−ψ2n(eq)ψ2n(ep).  

We first show that (ψ2n(ep))
2 = I. For p = 1 and p = 2, it can be easily verified from the following equalities:  

(ψ2n(e1))2 = T1T1 = I  

and  

Now let p = 2k − 1 (k > 1):  

  (ψ2n(e2))
2 = S1S1 = I.  

(ψ2n(e2k−1))2  

(i(k+1)2TkTk−1Sk−1 ···T1S1)(i(k+1)2TkTk−1Sk−1 
=  

···T1S1)  
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(by Lemma 2.2)  = i2(k+1)2(−1)k−1(TkTkTk−1Tk−1Sk−1Sk−1  

···T1T1S1S1)  

For p = 2k, we obtain  

= (−1)(k+1)2(−1)k−1I = (−1)k(k+3)I = I.  

  (ψ2n(e2k))2  

(i(k+1)2SkTk−1Sk−1 

 ···T1S1)(i(k+1)2SkTk−1Sk−1 

=  

···T1S1)  

=  i2(k+1)2(−1)k−1(SkSkTk−1Tk−1Sk−1Sk−1  

···T1T1S1S1)  

=  I.  

Let us now check the anticommutativity relations. By Lemma 2.2, ψ2n(e1)ψ2n(e2) = 

−ψ2n(e2)ψ2n(e1).  

Likewise, ψ2n(e1) and ψ2n(e2) anticommute with all ψ2n(ej) for j > 2 by Lemma 2.2.  

Now we consider various cases:  

i)  Let p = 2k − 1, q = 2l − 1 for k > 1,l > 1 and k < l.  

(k+1)2 (l+1)2 ψ2n(ep)ψ2n(eq) =  (i  TkTk−1Sk−1 ···T1S1)(i  TlTl−1Sl−1 ···T1S1)  

  =i(k+1)2+(l+1)2(TlTl−1Sl−1 ···Tk+1Sk+1)(TkTk−1Sk−1 ···T1S1)  

(TkSkTk−1Sk−1 ···T1S1)  

  =i(k+1)2+(l+1)2(−1)2k−1(TlTl−1Sl−1 ···T1S1(TkTk−1Sk−1 ···T1S1)  

  = −ψ2n(eq)ψ2n(ep). ii) Let p = 2k, q = 2l 

for k > 1,l > 1 and k < l.  

(k+1)2 (l+1)2 ψ2n(ep)ψ2n(eq) =  (i  SkTk−1Sk−1 ···T1S1)(i  SlTl−1Sl−1 ···T1S1)  

  =i(k+1)2+(l+1)2(SlTl−1Sl−1 ···Tk+1Sk+1)(SkTk−1Sk−1 ···T1S1)  

(TkSkTk−1Sk−1 ···T1S1)  

  =i(k+1)2+(l+1)2(−1)2k−1(SlTl−1Sl−1 ···T1S1)(TkTk−1Sk−1 ···T1S1)  

  = −ψ2n(eq)ψ2n(ep). iii) Let p = 2k − 1 < q 

= 2l, k > 1,l > 1.  

(k+1)2 (l+1)2 ψ2n(ep)ψ2n(eq) =  (i  TkTk−1Sk−1 ···T1S1)(i  SlTl−1Sl−1 ···T1S1)  

  =i(k+1)2+(l+1)2(SlTl−1Sl−1 ···Tk+1Sk+1)(TkTk−1Sk−1 ···T1S1)  

(TkSk ···T1S1)  

  =i(k+1)2+(l+1)2(−1)2k−1(SlTl−1Sl−1 ···T1S1)(TkTk−1Sk−1 ···T1S1)  

  = −ψ2n(eq)ψ2n(ep).  

It can be shown similarly in the remaining cases with the help of Lemma 2.2.  2  

Our current aim is to determine the corresponding matrix for all ψ2n(ei),i = 1,2,...,2n. We present the base for  

Fn denoted by  

En = {fj | j = 0,1,...,2n − 1}  

that we use to determine the matrices such that  

  1 , x = φi1i2...in(0),j = (in ...i1)2  

(3.2)  

  0 ,  otherwise  

As an example for n = 1 each of the base functions f0 and f1 can be thought of an element of C2 such as f0 = 

(1,0),f1 = (0,1) and the base functions for F2 will be the following elements of C4 :  

  f0 = (1,0,0,0),  f1 = (0,0,1,0),  f2 = (0,1,0,0),  f3 = (0,0,0,1).  (3.3)  
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With these definitions, we can now state our main theorem.  

 

Theorem 3.2 For each ei, 1 

≤ i ≤ 2n, the matrix of 

ψ2n(ei) with respect to En is 

obtained by the tensor 

product  

 
 ψ2n(e2) 

,  

Proof We prove this 

theorem by the method of 

induction. In the first step, 

we show the result is true 

for n = 1; in the second, we 

suppose that the result is 

true for n and prove it for n + 1.  

It can be easily verified that the matrices of ψ2(e1) and ψ2(e2) with respect to E1 are as follows:  

 .  

Let us assume the claim is true for n and determine the matrix corresponding to ψ2n+2(ei) with respect to En+1 

for all i = 1,...,2n + 2. By definition, ψ2n+2 is as follows:  

ψ2n+2 : Cl2n+2 → B(Fn+1) e1 e2 7→ T1  

7→... S1  

(1 < k ≤ n + 1),  

.  

At this point, we need the transformation that gives the identification between the algebras B(Fn) and B(Fn+1) 

defined in the following way: σn : B(Fn) →B(Fn+1),(σnT)(f)(x) = (Tf|Vn)(x
′)  

for T  B(Fn),f  Fn+1 and x′ = ω1ω2 ...ωn where x = ω1ω2 ...ωnωn+1. One can check that the following diagram 

is commutative:  

,  

where ι is the inclusion map. With the help of this diagram, we now identify the restriction of ψ2n+2 to Cl2n 

with ψ2n. We know from the assumption that for all j = 1,...,2n the matrix of ψ2n(ej) relative to En = 

{f0,f1,...,f2n−1} is given as in 3.4.  

We will use the following property given in [5] and apply this to ψ2n and ψ2:  

Property: Let f : A → End(V ) and g : B → End(W) be representations and a  A, b  B be given. The matrix 

of (f  g)(a  b) with respect to  

{v1  w1,...,v1   wn,v2  w1,...,v2  wn,vm  w1,...,vm  wn} is C  D such that C is the matrix of f(a), D is 

the matrix of g(b) with respect to {v1,v2,...,vn}, {w1,w2,...,wm} basis for V and W , respectively [5].  

If we consider the following isomorphism with Fn  F1 and Fn+1 as φ 

: Fn  F1 → Fn+1 a  b 7→ b  a  

then the base En+1 of Fn+1 emerges as the image of the ordered base of Fn  F1  

{f0  f0,f0  f1,f1   f0,f1  f1,...,f2n−1  f0,f2n−1  f1}.  

  

  
7 →   

7 →   
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Remark 3.3 Note that the functions f0 and f1 in both basis are not the same. We will use the same notation to 

avoid indices confusion and distinguish these functions by looking at the spaces to which they belong.  

We now consider the isomorphism ρ between Cl2n+2 and Cln  Cl2 given in [4].  

ρ : Cln+2 → Cln  Cl2 e1 7→ 1  e1 e2 7→ 1  e2 e3 7→ ie1   e1e2 e4 →7 ie2   e1e2 k ≥ 5, ek 7→ − iek−2  e1e2.  

Using our assumption for n and the isomorphism ρ, if we apply the above property mentioned in [5] to ψ2n and 

ψ2, then we obtain the matrices from the following equalities:  

  
which completes the proof. We note that the identification between the spaces B(Fn  F1) and B(Fn+1) is given 

as follows: h : B(Fn  F1) → B(Fn+1),h(T)(g) = (φTφ−1)(g).  

2  

To understand the dynamics of the generators’ image better, we present the case n = 2 in Example 3.4. 

Example 3.4 Let us consider the transformation ψ4 and the corresponding base {f0,f1,f2,f3} given in 3.3 such 

that ψ4 : Cl4 → B(F2) e1 7→ T1 e2 7→ S1 e3 7→ iT2T1S1 e4 7→ iS2T1S1. Since  

T1(1,0,0,0) = (1,0,0,0)  

T1(0,0,1,0) = (0,0,−1,0)  

T1(0,1,0,0) = (0,1,0,0) T1(0,0,0,1) = (0,0,0,−1), the matrix of ψ4(e1) is 

obtained as follows which is equal to I2   U :  

.  
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Similarly since  

S1(1,0,0,0) = (0,0,1,0)  

S1(0,0,1,0) = (1,0,0,0)  

S1(0,1,0,0) = (0,0,0,1) S1(0,0,0,1) = (0,1,0,0), we obtain the following matrix 

which is equal to I2  V as the matrix of ψ4(e2):  

0 1  0  0  

1 0  0  0  

0  0   

.  

  0 0 1 0  

Since iT2T1S1(1,0,0,0) = iT2T1(0,0,1,0) = iT2(0,0,−1,0) = (0,0,−i,0) iT2T1S1(0,0,1,0) = iT2T1(1,0,0,0) = 

iT2(1,0,0,0) = (i,0,0,0) iT2T1S1(0,1,0,0) = iT2T1(0,0,0,1) = iT2(0,0,0,−1) = (0,0,0,i) iT2T1S1(0,0,0,1) = 

iT2T1(0,1,0,0) = iT2(0,1,0,0) = (0,−i,0,0), we obtain the following matrix which is equal to −U  J as the matrix 

of ψ4(e3):  

 .  

And using the following equalities iS2T1S1(1,0,0,0) = iS2T1(0,0,1,0) = iS2(0,0,−1,0) = (0,0,0,−i) iS2T1S1(0,0,1,0) 

= iS2T1(1,0,0,0) = iS2(1,0,0,0) = (0,i,0,0) iS2T1S1(0,1,0,0) = iS2T1(0,0,0,1) = iS2(0,0,0,−1) = (0,0,−i,0) 

iS2T1S1(0,0,0,1) = iS2T1(0,1,0,0) = iS2(0,1,0,0) = (i,0,0,0), we obtain the following matrix which is equal to −V 

 J as the matrix of ψ4(e4):  

 ,  

which is equal to −V  J .  

Remark 3.5 So far, we have verified our claim in every even dimensional case. The odd case of the theorem 

follows immediately from the results of [7].  
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