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Abstract: This paper investigates the superlinear first-order differential systems of the form 

u′(t)+a(t)u(t)=λb(t)f(v(t−τ(t))), t R, v′(t)+a(t)v(t)=λb(t)g(u(t−τ(t))), t R, where λ is a parameter and a, b, τ, f, 

and g satisfy certain assumptions. The aim of this study is to explore the existence of positive periodic 

solutions for this system and use the bifurcation theory to demonstrate the presence of an unbounded 

component of positive solutions. The authors use a new technique to directly prove that the component must 

bifurcate from infinity at λ = 0 without additional conditions of f, g. The research has significant applications 

in areas such as physics, information, chemistry, engineering, economics, and mathematical biology. The 

authors also discuss the asymptotic problem in an abstract setting and apply the result to the proof of the main 

theorem. Overall, the paper contributes to the study of differential equations under superlinear or sublinear 

conditions and provides useful information for the numerical solutions of such equations  

Keywords: superlinear differential system, bifurcation theory, positive periodic solutions, unbounded 

component, asymptotic problem, numerical solutions  

  

Introduction  

We are concerned with  the first-order system of the form  

(1.1) where λ  R is a parameter, a,b,τ and f,g satisfy the 

assumptions:  

(H1) τ  C(R,R) is an ω-periodic function, a,b  C(R,[0,+∞)) are two ω-periodic functions such that  

 .  

The corresponding scalar equation of the form (1.1) attracts much attention from mathematicians. Many 

authors devote themselves to exploring the existence of periodic solutions of this kind of equation and some  

International Journal of Interdisciplinary Research Statistics, Mathematics and Engineering |  

excellent results have been achieved, see [4, 5, 7–12, 15, 17]. For instance, Cheng and Zhang [4] considered 

the existence of positive ω−periodic solution for equation  

;   

( H2)  f,g  ∈   C ( R , (0 , + ∞))  are  nondecreasing functions;   
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⩾ 

 u′(t) + a(t)u(t) = λb(t)f(u(t − τ(t))), t  R, (1.2) where λ is a parameter. By using the fixed point theorem in 

cones, they obtained the following result. Theorem 1.1 ([4, Thm 2.3]) Assume a,b,τ satisfy (H1), f satisfies 

(H2) and (H3), then for any λ  (0,λ), equation (1.2) has at least two positive ω−periodic solutions, where  

 and G(t,s) is expressed as (1.6) below.  

Problem (1.1) represents a class of differential systems with delay. The delay differential equation is mainly 

used to describe the current and past history of state power systems, so it is in the physical, information, 

chemistry, engineering, economics, and mathematical biology and other fields that have important 

applications. Up to now, many scholars have made good research results in this aspect, see [16, 20], other 

similar research can be found in [1, 2, 14].  

However, there are only a few papers concerning the existence of positive periodic solutions for first-order 

systems, we can refer to [3, 13, 18] which, via the fixed point theorem in the cones and the Schauder’s fixed 

point. It is worth mentioning that due to the limitations of the tools they used, all the results mentioned above 

did not provide information on the global behavior of positive periodic solution sets. However, this global 

behavior is very useful for computing the numerical solutions of differential equations as it can be used to 

guide numerical work. For example, it can be used to estimate the u-interval in advance in applying the finite 

difference method and when applying the shooting method, it can be used to restrict the range of initial values 

that need to be considered.  

In [6], Chhetri and Girg studied a system of the semilinear equation of the form  
 
−∆u = λf(v), in Ω,  

  

−∆v = λg(u), in Ω,  (1.3)  u = 0 = v, on ∂Ω,  

where λ  R is a parameter and Ω  RN,N  2, is a bounded domain with C2,η -boundary for some η  (0,1), the 

nonlinearities f and g satisfy (H2) and (H3). Under these assumptions, they obtained the global behavior of 

positive solution sets of (1.3) by using the global bifurcation theorem. To be more precise, they obtained a 

component of positive solutions for (1.3), emanating from the origin, which is bounded in positive λ-direction. 

If in addition, Ω is convex, and f,g  C1 satisfy the certain subcritical condition, they showed that the 

component must bifurcate from infinity at λ = 0.  

Motivated by [4] and [6], we attempt to study the global bifurcation behavior of positive ω−perodic solutions 

for problem (1.1) and give a similar result to [6]. Compared to [6], the innovation of our result is that we use 

a new technique, which can directly prove that the component must bifurcate from infinity at λ = 0 without 

additional conditions of f,g in [6]. This technique plays an important role in applying bifurcation theory to 

study the global structure of solution sets of differential equations under superlinear or sublinear conditions 

because it can directly obtain the limits of a sequence of connected sets, which are the connected branches of 

the solution set of the problem under study.   

let X0 = {u  C(R,R) | u(t) = u(t + ω)}, E0 = C1(R,R), denote X = X0 × X0 and E = E0 × E0, it is easy to know X 

and E are Banach space endowed with the norm k(u1,u2)kX = ku1kC + ku2kC and k(u1,u2)k = ku1kC1 + 

ku2kC1 respectively, where .  

We denote Π of the form  

,   
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Π = {(λ,(u,v))  R × E | (λ,(u,v)) solution of (1.1)}.  

If (λ,(u,v))  Π and u > 0, v > 0, then we say that (λ,(u,v)) is a positive solution of (1.1). By a continuum of 

solutions of (1.1) we mean a subset K  Π which is closed and connected. By a component of solutions set Π 

we mean a continuum which is maximal with respect to inclusion ordering. We say that λ is a ∞ bifurcation 

point from infinity if the solution set Π contains a sequence (λn,(un,vn)) such that λn → λ∞ and k(un,vn)k → +∞ 

as n → +∞. We say that a continuum C bifurcates from infinity at λ  R if there exists a sequence of solutions 

(λn,(un,vn))  C such that λn → λ∞ and k(un,vn)k → +∞ as n → +∞.  

 
For u  K, consider the corresponding linear eigenvalue problem of (1.1) as follows:  

  u′(t) + a(t)u(t) = λb(t)u(t),  t  R.  (1.7)  

Denote the operator L : E0 ∩ K → C(R,R) by  

  Lw := w′ + a(t)w, w  E0 ∩ K.  

A direct result of Krein-Rutman theorem, (1.7) has a unique eigenvalue µ1, which is positive and simple, and 

the corresponding eigenfunction φ1 is positive. Moreover, µ1 is also an eigenvalue of L , that is, there exists a 

positive  such that  

  ,  (1.8) where L  is the conjugate operator of L.  

We first state a nonexistence result, which holds under weaker assumptions than (H1)-(H3).  

Theorem 1.2 Suppose there exist two constants α,β > 0 such that f(s),g(s) > αs + β for all s  R. Then there 

are no solutions of (1.1) for λ  λ  
def= µ1/α.  

The following theorem is the existence result.  

Theorem 1.3 Let (H1)-(H3) hold. Then there exists an unbounded component C  Π satisfying the following:  

(a) (λ,(u,v))  C is positive whenever λ  (0,λ );  

(b) (0,(0,0)) is the only element belonging to C with λ = 0;  

(c) Projλ [0,+∞)C def= {λ  [0,+∞) | (u,v)  E with (λ,(u,v))  C}  [0,λ );  

easy  ( that  see  to  is  It  1.1 can    ) be  written as   

t + ω   

u ( t )  =  λ G ( t,s ) b ( t ) f ( v ( s  −   τ ( s ))) d s,   (1.4)   

t   

t + ω   

v ( t  =  ) λ G ( t,s ) b ( t ) g ( u ( s  −   τ ( s ))) d s,   (1.5)   

t   

where   

  .   (1.6)   

, we have   Notice that 

,   

where   and   

that  Define  K  is  a  cone in  X 0   by   

.   

Obviously,  K  is a total cone.   

Z   

Z   
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(d) any sequence (λn,(un,vn))  C such that k(un,vn)k → +∞ as n → +∞ and λn > 0 must satisfy λn → 0+ as 

n → +∞.  

Remark 1.4 We may conclude the number of positive solutions of (1.1) from Theorem 1.3:  

(i) (1.1) has no positive solution for λ  λ ;  

(ii) there exists λ  < λ  such that (1.1) has at least two positive solutions for each λ  (0,λ ).  

Example 1.5 Consider the first-order differential system of the form:  

,  

Obviously, a(t) = sint + 1, b(t) = cost + 1, τ(t) = sint, f(s) = es, g(s) = es2 , γ(t) = t − sint, and satisfy the hypotheses 

of (H1)-(H3).  

1.  Preliminary results  

To prove Theorem 1.3, first, we approximate the superlinear nonlinearities f and g by a sequence of 

asymptotically positively homogeneous nonlinearities fn and gn, respectively. Then we will discuss this 

asymptotic problem in an abstract setting and apply the result to the proof of Theorem 1.3. In order to discuss 

this auxiliary, we consider the first eigenpair of the following eigenvalue problem 

 

,  

(2.1) where w1,w2  X0 ∩ E0, θ1,θ2 are positive 

constants.  

For convenience, the eigenvalue problem (2.1) can be read as follows:  

 
are respective eigenvalues and eigenvectors of the coefficient matrix. Taking into account the linearity of  

 
The equations of this system are not coupled and it is obvious that z1 = 06if −λ√θ1θ2 = µ1 and z1 = φ1. On  

  

 
the other hand, z2 = 06 if λ√θ1θ2 = µ1 and z1 = φ1. Therefore, z1  = 06implies z2 = 0 and z2 = 06 implies z1 = 0.  

Hence, the eigenfunctions of corresponding to  are  

  .   

Note that  − √ θ 1 θ 2   and  √ θ 1 θ 2 ,   

  

operator  L , we infer  that   

  

satisfies   

.   
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Let  

T = {(λ,(u,v))  R × E | (λ,(u,v)) solution of (2.2)}, then 

we prove the following bifurcation result.  

Lemma 2.1 Let (A1)–(A2) hold. Then ν1 is the unique bifurcation point from infinity for (2.2). Moreover, there 

exists a continuum D  T bifurcating from infinity at ν1 and satisfies the following:  

(i) if (λ,(u,v))  D and λ > 0 then u > 0 and v > 0;  

(ii) for λ = 0,(u,v) = (0,0) is the only solution of (2.2) and (0,(0,0))  D ; def  

(iii) ProjλC = {λ  R |  (u,v)  E with (λ,(u,v))  D} is bounded from above and unbounded from below. 

Proposition 2.2 ([21, Thm. 14.D]) Let Y be a Banach space with Y =6 {0} and let F : Y → Y be 

compact. Then the solution component C  R × Y of the equation x = λF(x)  

which contains (0,0)  R × Y is unbounded as are both subsets def  

C± = C ∩ (R± × Y ), where R+ def= [0,∞) 

and R− 
def= (−∞,0].  

Definition 2.3 ([19]) Let Z be a Banach space and {Cn | n = 1,2,···} be a certain infinite collection of subset 

of Z. Then the superior limit of D of {Cn} is defined by  

, such that xni → x}.  

Lemma 2.4 ([19])Let Z be a Banach space with the norm k · kZ , let {Cn} be a family of closed subsets of Z. 

Assume that:  

(i) there exist zn  Cn, n = 1,2,··· , and z   Z, such that zn → z ;  

(ii) dn = sup{kxkZ | x  Cn} = ∞;  

(iii) for every  is a relatively compact set of Z, where BR = {x  Z | kxkZ  R}, then 

there exists an unbounded component C in D and z   C.  

2.  Proof of main results  

We define an inner product on E0 ∩ X0  by  

1  Z h    x,yi :=x(t)y(t)dt,x,y    E0  ∩  X0. 

,   

which is  (− √ θ 1 φ 1 , √ θ 2 φ 1 ) . Analogously, we get the eigenfunctions corresponding to   as   

( √ θ 1 φ 1 , √ θ 2 φ 1 ) . Note that  φ 1   is an eigenfunction of ( 1.7 )  which is positive. Thus   is a unique simple  

eigenvalue of ( 2.1 )  such that both components of its eigenfunctions,  ( √ θ 1 φ 1 , √ θ 2 φ 2 )   ∈   E , are positive in R.   

an  Now,  consider  asymptotically  positively  

homogeneous system  of the form   

,   

(2.2)   

The  nonlinear  where).  

perturbations  f, e   g    : R  →  R e satisfy  

the following assumptions: e   ∈   

A1)  ( f  and  g  are continuous and bounded functions;   

for all  x  R.   

e   
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  (3.1)  

0  

Proof of Theorem 1.2 According to (1.4)-(1.5) and the positivity of f and g, all solutions (λ,(u,v)) of (1.5) 

with λ > 0 must satisfy u,v > 0. Let (λ,(u,v)) be a solution of (1.1) with λ > 0, then due to the assumptions of 

f and g, we get  

  (u + v)′ + a(t)(u + v) > λb(t)(α(u + v) + 2β), t  R.  

Denoting z def= u+v, we see that z > 0 and z′ +a(t)z > λb(t)(αz +2β), then by combining (3.1) and (1.8), we get  

 
This combines with (H1) and the positivity of , we must have λ < µ1/α. Therefore, (1.1) has no solution  

for λ  λ  def= µ1/α.  2  

Proof of Lemma 2.1 The operator equation corresponding to the system (2.2) is  

  (u,v) = λL+(u,v) + λH(u,v),  (3.2) where L+ : E → E denotes the mapping (u,v) 7→ 

L−1(θ1b(t)v+,θ2b(t)u+) and H : E → E denotes the mapping (u,v) 7→ L−1(b(t)fe(v),b(t)ge(u)).  

Then L+ is not linear but both L+ and H are continuous and compact. Moreover, since f,g and b are bounded, 

H satisfies  ee  

  ,  (3.3) which is crucial in establishing a version of a global bifurcation 

result for (3.2).  

The following proposition shows that the unique possible bifurcation point from infinity for (3.2) is ν1.  

Proposition 3.1 If ν∞ is a bifurcation point from infinity for (3.2), then ν∞ = ν1. Moreover, for any sequence  

(λj,(uj,vj))  R × E with λj → ν1 and k(uj,vj)k → +∞ as j → +∞, there exists a subsequence (λjk,(ujk,vjk)) 

such that  

,  

where the convergence is in E.  

Proof Let (λj,(uj,vj))  R × E be a solution of (2.2) such that k(uj,vj)k → +∞ and λj → ν∞. Then  

 satisfies  

 

,   

and   

,   

then   

.   

  ,   

  ,   

or equivalently satisfies   

.   
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It then follows from (3.3) that the right hand side is bounded in X (independent of j). Hence kujkC1 and 

kvb0jkC1 are bounded (independent ofbb j), and there exists subsequence of ubj and vbj converging to ubb and 

vb in  

E . Therefore (ν∞,(u,v))  R × (E ∩ X) satisfies  

.  

Suppose ν∞  0. Since v+   0, it follows (1.4) that u ≡ 0 and repeating the same argument we get v ≡ 0 as well. 

This leads to a contradiction sincebk(u,bbvb+)k = 1.b b+ b  b  b  

For ν∞ > 0, we distinguish two cases: v ≡ 0 and v 6≡ 0. In the first case, we get u ≡ 0, a contradiction as before.  

In the other case, we get u > 0 from (1.4) and v > 0 by repeating the same argument. Thus ν and u,  v >b 0 

satisfy the linear eigenvalue problem (b 2.1). ∞  

However, we already discussed that (2.1) has precisely one eigenvalue  with componentwise 

positive eigenfunction (√θ1φ1,√θ2φ1). Therefore, it must be that ν = ν1 and ∞  

.  

This concludes the proof of Proposition 3.1.  

  Now we complete the proof of Lemma 2.1.The operator equation (3.2) satisfies the hypotheses of  

Proposition 2.2 with F := L+ + H. Then there exist unbounded continua  

D  solution of (3.2)}  

containing (0,(0,0)). By the nonexistence result of Theorem 1.2 D+  ([0,λ ) × E), and thus D+ must be 

unbounded in the Banach space E-direction. Then D def= D+ + D− is a continuum containing (0,(0,0)). By 

Proposition 3.1, ν1 is the only bifurcation point from infinity for (3.2) and D+ is unbounded in the E-direction, 

hence D+ must bifurcate from infinity at ν1. To conclude the proof of Lemma 2.1, it remains to verify that D 

satisfies the properties (i)–(iii).  

It follows from assumption (A2) and (1.4)-(1.5) that u,v > 0 whenever (λ,(u,v))  D and λ > 0, this implies 

part (i). For λ = 0,(u,v) = (0,0) is the only solution of (2.2) and (0,(0,0))  D, hence part (ii) holds. Applying 

Proposition 2.2, we see that D− must be unbounded in R×E. However, by part (ii) and the fact that ν1 is the 

unique bifurcation point from infinity for (3.2), we see that D− must be unbounded in the negative λ-direction, 

hence (−∞,ν1)  ProjλD. This completes the proof of Lemma 2.1. 2 Proof of Theorem 1.3 As discussed in 

Introduction, we prove the existence of a continuum C by taking the limit of sequence of continua 

corresponding to an asymptotically positively homogeneous system. In step 1, we discuss the approximation 

scheme, in step 2, we pass to the limit and in step 3, we give a prior bound.  

Step 1. Approximation problems  

Fix n  N and define fn(s),gn(s) : R → (0,∞) by 

defs  n fn(s) =.  

  ;  n < s  

Then fn and gn are continuous functions on R.  

For each n  N,(u,v)  E ∩ X, we consider the following problem  

b   
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,   

(3.4) which approaches (1.1) as n → +∞. We will use Lemma 2.1 to treat (3.4) and thus we rewrite (3.4) in 

the form  

 

Since fn,gn > 0, it is easy to see that (3.5) satisfies the hypotheses of Lemma 2.1 with  and  

e e and  . Then by Lemma 2.1, ν1,n is the unique bifurcation  

point from infinity for (3.5) and there exists a continuum Cn of positive solutions of (3.5) bifurcating from 

infinity at ν1,n satisfying the properties (i)–(iii) of Lemma 2.1. In particular, (0,(0,0))  Cn, Cn is bounded above 

by the hyperplane λ = λ .  

Step 2. Passing to the limit  

Now we verify {Cn} satisfying the conditions of Lemma 2.4. By the definition of the continuum, Cn is closed.  

Since all of Cn contain (0,(0,0)), we can choose zn  Cn such that zn = (0,(0,0)) for each n = 1,2,··· .  

Naturally, zn → z  = (0,(0,0)), the condition (i) of Lemma 2.4 is satisfied. 

Obviously, because of the unboundedness of {Cn}, then dn = sup{|µ| + 

k(u,v)k | (µ,(u,v))  Cn} = +∞, (ii)  of Lemma 2.4 holds.  

(iii) in Lemma 2.4 can be deduced directly from the Arzelà-Ascoli theorem and the definition of fn,gn. 

Therefore, the superior limit of {Cn} contains a component C  Π joining (0,(0,0)) with infinity, and it follows 

from u,v > 0 for λ > 0 whenever (λ,(u,v))  C , which establishes (a). Part (b) follows from (0,(0,0))  C and 

f(0),g(0) > 0. (c) in Theorem 1.3 can be deduced directly from the Theorem 1.2.  

Step 3. A prior bounds  

Next we show for any closed and bounded interval I  (0,λ ), there exists M > 0, such that sup{k(x,y)k 

| (µ,(x,y))  C, µ  I}  M.  

Suppose on the contrary that there exist {(µn,(xn,yn))}  C ∩ (I × K) with k(xn,yn)k 

→ +∞.  

This implies that for arbitrary t  R,  

  1  1  

(xn,yn)  =  µnQ(xn,yn)  = (µnG(t,s)f(yn(s − τ(s)))ds,µn Z G(t,s)f(xn(s − τ(s))ds),  

  0 0  

of system ( 2.2  as )   

,   

(3.5)   

where   and . We note that    and   are bounded in   

R. Indeed, since  f n ( x )   is nondecreasing and  f n ( x )  =  f ( x   )   > 0   for  x  ⩽   n , we get   

  const.  <   + ∞ ,   

where the constant is independent of   . We can repeat the same argument for  .   

Z   
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where Q : E → E denotes the mapping (x,y) 7→ L−1(f(y),g(x)). 

 then it follows  

Choosing a subsequence of {(µn,(xn,yn))} and relabelling if necessary, it follows that there exists (µ0,(x0,y0))  

I × E with k(x0,y0)k = 1 such thatb b  

lim  (µnyn)) = (µ0,(x0,y0)), n→+∞  

combines this with (H3) and the positivity of, it follows that  

(x0,y0) = µ0(+∞,+∞),  

this contradicts , therefore, sup{k(x,y)k 

| (µ,(x,y))  C, µ  I}  M.  

Finally, we prove C must bifurcate from infinity at λ → 0+. Now let (λn,(un,vn))  C with k(µn,(un,vn))k → +∞ 

as n → +∞ and λn > 0 for all n  N. Suppose to the contrary that λn → λ′ > 0 as n → +∞, then there exists a 

closed and bounded interval I such that λ′  I. By the above proof, k(un,vn)k  M < +∞  

for all λ′, a contradiction to k(un,vn)k → +∞ as n → +∞, which establishes part (d) and completes the proof of 

Theorem 1.3.  

3.  Conclusion  

In this paper, the global structure of positive periodic solutions for a class of superlinear first-order periodic 

differential systems is studied by using the global bifurcation theory. The innovation of this paper is that we 

use a new technique to provide the global behavior of the set of positive periodic solutions without the 

additional conditions mentioned in previous papers.  
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