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COMBINING DATA ASSIMILATION AND THE SIR INFECTION  

EQUATION FOR BETTER UNDERSTANDING OF COVID-19  
  

  

G. Kitagawa,  

Institute of Mathematical Analysis Osaka, Japan  

Abstract: The outbreak of the new coronavirus pandemic (COVID-19) has created a global health crisis, and 

a significant challenge to mitigate its spread and impact on global communities. The SIR equation has been 

widely used as a theoretical model to simulate the course of an infection, however, its parameters cannot be 

known precisely due to the time lag between infection and onset and infectivity in the not-onset state. In this 

document, we propose a solution to the SIR infection equation using data assimilation to tackle the issue of 

parameter estimation in the present case. We integrate the SIR equation and observation equation within the 

framework of data assimilation, and estimate the unknown parameters using the maximum likelihood method. 

Data assimilation is considered effective in estimating the true value of unknown parameters through Bayesian 

inference. The state-space model is used to improve the accuracy of parameter estimation, generating virtual 

numerical simulations under different conditions and comparing the observation data on newly infected 

individuals, dead individuals, and severely ill individuals. Our study evaluates the effectiveness of data 

assimilation in obtaining accurate estimates of the infection rate, recovery rate, initial number of infected 

people, observation coefficient, and standard deviation of observation data noise.  

Keywords: SIR equation, COVID-19 pandemic, data assimilation, parameter estimation, maximum 

likelihood method, Bayesian inference, state-space model.   

  

  

INTRODUCTION   

The new coronavirus infection (COVID-19) is rampant. Even now, more than a year after the start of the 

infection, the infection has not yet shown signs of ending. It can be said to be an infection that remains in 

history.   

The most troublesome part of this infection is that it not only takes several days from infection to onset, but it 

also infects for several days even in the not-onset state. Therefore, a considerable number of infected persons 

with infectivity are left unchecked. Therefore, even if the infection status is simulated by the SIR equation 

[12], the true values of the infection parameters and the number of infected persons cannot be grasped.   

However, it is possible to observe the infection status as it is. The daily number of infected people and the 

cumulative number of infected people are announced. The numbers in these data are not true values, but they 

reflect true values. It is very useful for getting a rough idea of the infection status.   

As mentioned above, it is impossible to grasp the true value only by the SIR equation [1-2]. However, it may 

be possible to estimate the true value by combining it with the observation equation. In short, the framework 
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of data assimilation or state-space model [3-5] is considered to be effective. The parameters of the SIR 

equation, such as the daily number of infected people, infection rate, and eviction rate, are unknown but are 

embedded in the observed values. Unknown parameters must consist with the observed values. Wouldn't it be 

possible to determine these unknowns by combining them using Bayesian inference and the method of least 

squares? We report this effectiveness because we were able to confirm this effectiveness from the numerical 

results.   

In order to fully explain the infection phenomenon, it is necessary to explain spatial characteristics such as the 

effect of the population density distribution, but this is not covered here. We focus on elucidating recurring 

infection waves and hidden infections. Regarding the spatial characteristics of the SIR equation, we would 

appreciate it if you could refer to the author's paper [2] in References.   

2. STATE SPACE MODEL OF SIR INFECTION EQUATION   

2.1. Space State Model   

Among the physical models we are targeting, there are many that we know the differential equations (system 

models) that describe the physical phenomena (systems) but cannot directly observe the physical phenomena 

themselves or observe them sufficiently. .. An earthquake-like phenomenon would be a good example. It is 

not fully understood what kind of process is going on underground, including the system model. There is a 

weather forecast around us. Practical level forecasts might be difficult with theory alone.   

However, even in such a case, there might be observation data reflecting a physical phenomenon. Although it 

might be insufficient, it might help to solve the problem. A state-space model that makes predictions using 

both theory and observational data gives us an idea of such cases. Originally born in control engineering, it is 

now considered to be a means of improving the accuracy of numerical simulations, and has come to be widely 

used in many fields other than control as data assimilation. The best known would be the weather forecast.  

Let the system variable x t( ) be a function of time t , and let the observed variable be y t( ) . For simplicity, 

we consider one-dimensional case. In the state space model, the system model that describes the physical 

system is given by dx ax bu x ,                                                                          (1) dt  

and the observation model by  y cx du y ,                                                                            (2)  where u t( ) is an 

external input, a b c d, , , are parameters, and x ( )t and y( )t are noises following normal distributions with 

mean 0 and variances x
2 and y

2 . Namely, in one-dimensional case, we have   

 1 x2 , y ~ 12 exp 2 y2y2 .              

(3)   

x ~  2 exp 2 x2    2 y    

  2 x    

The non-linear case may be considered, but the linear case may be sufficient for the essential discussion. 

However, the SIR infection equation actually discussed below is multidimensional and non-linear. When the 

noise x does not exist or can be negligible, we have dx  

  axbu ,                                                                                (4)  dt  

y cx du  y .                                                                             (5)   

Only the observed noise y exists as noise. In this case, since it is easy to handle, a mathematical model is made 

using   

Eqs. (4) and (5). The application to the SIR infection equation described below is also considered in this 

direction.   
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In this paper, we use the likelihood method (a special case of Bayesian inference) for data assimilation to solve 

the above state-space model. The key statistical property at that time is Eq. (5).   

2.2. State Space Model of SIR Equation   

The infection phenomenon caused by the new coronavirus infection COVID-19 follows the mean-field theory 

called the SIR equation:   

dS    

 

SI ,                                                                                 (6) dt  N dI  

SI  I ,                                                                              (7) dt N dR  

I .                                                                                    (8) dt  

 
N, S, I, and R are the total population, the uninfected population (strictly speaking, the susceptible population), 

the currently infected population, and the recovered population (including the dead). From Eqs. (6), (7), and  

(8), the following population conservation equations are obtained:   

 N  I R,                

(9)  β/N and γ are infection and recovery rates, respectively.  The first term on the right-hand side of equations 

(6) and (7) is generally given in the form of not dividing by N, but as will be described later, in order to reduce 

the population dependence of β, it should be considered in the form of dividing by N.    

If persons found infected are quarantined, the infectivity can be contained. Hence, that amount must be 

subtracted from the presently infected persons I in the calculation of newly infected persons. Applying SIR 

theory in such cases seems problematic. However, the SIR theory could be considered sufficient for the 

purpose of theoretically examining the possibility of data assimilation.   

The following four points give difficulties to handle the infection phenomenon by the SIR equation:   

(1) Since it is a mean-field theory, it is not possible to express the influence of spatial distribution 

characteristics  such as population density.   

(2) Since there are unidentified infected persons, the true number of infected persons is unknown.   

(3) There are waves in the infection phenomenon, but it is necessary to introduce the mechanism of the 

waves.   

(4) The effect of people coming and going cannot be clearly expressed.   

On the other hand, daily time-series data on newly infected persons, dead persons, severely ill persons, etc. 

are published daily. New daily infections are not true daily infections, as some of them are unidentified. 

Severely ill people might be fairly close to the true value, and dead people would be the almost true value.  

Regarding (1), it is sufficient to extend the theory of spatial discretization such as dividing a large population 

group into smaller population groups. Regarding (2), it is impossible to observe the true number of the infected 

person, but since there is observation data that reflects it, it is conceivable to use this. Namely, the infection 

phenomenon will be modeled within the framework of the state space model. In the following, we will 

consider from this point of view. Regarding (3), when the number of infections decreases, factors that promote 

infection such as fewer people wearing masks are created due to the relaxation of people, and when the number 

of infections increases, factors that suppress infection are created. Regarding (4), the more people contact, the 

more infections, and the fewer people contact the fewer infections. Therefore, since infections increase or 

decrease due to social influences, the infection coefficient should be regarded as an effective coefficient that 

reflects these effects.    

  

S   
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If x in Eq. (4) is considered as a three-dimensional vector and extended to the non-linear case, it can be used 

as a system equation for a state-space model of the present case.   

On the other hand, observational data include daily newly infected person ODlyI , severely ill person OSrsI , and 

dead persons ODead . The currently infected person OPrsI (~ I) and the cumulative infected person OAccI could 

also be used as observation data. Of course, it would be possible to use multiple observation data, but in this 

paper, we will limit it to one observation data. For simplicity, the observation model shall use only the 

cumulative number of infected individuals for example:    

  OAccI n  cIAcc n  n ,(n  1,2,, N) .                                                        (10)  n is the time step, and time t is 

t  n t ( t  1day) .   

Even if only equation (10) is used as the observation model, the effects of unknown variables such as the 

number of initial infections I(0) , infection rate , recovery rate , and variance  are reflected in the 

observation data. Furthermore, very importantly, the observation coefficient c can also be an unknown 

variable in this model.   

Even if only equation (10) is used as the observation model, the effects of unknown variables such as the 

number of initial infections I(0) , infection rate , recovery rate , and variance  are reflected in the 

observation data. Furthermore, very importantly, the observation coefficient c can also be an unknown 

variable in this model.   

2.3. Solution of SIR State Space Model Using Bayes Inference   

If the observed data is O and the unknown is U j , ( j 1,2, , J) , the conditional probability is given by Bayes' 

theorem:  

  P O U( ,  j )P O U( ,  j )P O U( |  j ) (P U j )  

P U( j | O) .                                     (11) P O( )  j P O U( , j )  j P O U( | j ) (P U j )  

P U( j ) , P O U( | j ) , and P U( j | O) are called prior probabilities, likelihood functions, and posterior 

probabilities, respectively. This makes it possible to calculate the probability of an unknown quantity that 

yields observational data. Bayesian inference infers that U j , which maximizes this posterior probability, gives 

O .   

If it is allowed to assume   

PU( 1) PU( 2) PU( J ) ,                                                            (12)   

Eq. (11) becomes   P O U( |  j )  

  P U(  j | O)  .                                                              (13)    j P O U( |  j )  

This is nothing but the likelihood estimation. In the following, this assumption is usd.   

 In the calculation of likelihood function P O U( | j ) , in case of O OAcc I for example, Eq. (10) is used. Namely   

P O ( AccI n  cIAccI n) (cIAccI n
) N(0, 2) or P O( AccI n (cIAccI n))  N(1, 2) .                         (14) 

The effects of the number of initial infections I(0) , infection rate   and recovery rate  are reflected in the 

accumulated number of infections IAccI n , (n  1,2, , N) . Using Eq. (14), we have   

  N  1 (OAccI n  cIAccI n )2 (cIAccI n )2    

P O U( |  j )  2 exp   2 2  .                                        (15) n 1  2  

The maximum likelihood method is used for the estimation of unknown parameters. That is, the one that 

maximizes the likelihood function is found by the hill-climbing method. However, as can be seen from Eq. 

(15), if P O U( | j ) itself is used, there is a high possibility that underflow will occur, so we consider taking 

the natural logarithm log P O U( | j ) . Namely, the maximum of   

 log P O U(  | j )  

2 

2 

    



 G. Kitagawa (2022)  

  

    

38 
International Journal of Interdisciplinary Research Statistics, Mathematics and Engineering  

| https://sadipub.com/Journals/index.php/ijirsme 

 

N log 2 1 2 nN 1 (OAccI n cI2
n )22 (cIAccI n )2                                      (16)  is searched using the hill-climbing 

method. Since the unknown parameter  etc. do not appear explicitly, the numerical differentiation is used to 

obtain the derivatives due to parameters.    

3. VIRTUAL NUMERICAL SIMULATION   

3.1. Generation of Observation Model   

First, a time series of observation data is generated using the system model and the observation model under 

the following conditions.   

mode 1 When using the number of currently infected people:   

  OPrsI n  cIPrsI n (1 n ),(n  1,2,, N) .                                                       (17)  mode 2 When using the 

daily number of newly infected people:   

  ODlyI n  cIDlyI n (1 n ),(n  1,2,, N) .                                                       (18)  mode 3 When using the 

cumulative number of infected people:   

 OAccI n cIAccI n (1 n ),(n 1,2,, N) .                                                       (19)  The data released include the number 

of new infections, the number of severe cases, and the number of deaths on a daily basis. We consider the 

following as data. The daily number of newly infected persons is the published data itself, and the cumulative 

number of infected persons can be calculated from the daily number of newly infected persons, but the current 

number of infected persons cannot be calculated from the published data. The daily and cumulative numbers 

of infected people reflect data on those who are infected, but not those who leave the infection. Both of these 

are reflected in the currently infected person. These things are not a problem in a purely theoretical 

examination, but they are problems in applying the theory to reality.  Table 1 List of parameters   

Name Code   in  Definition   Value   

mode    PrsI, DlyI, AccI (Currently, daily and   

Cumulative number of infected people is used as observation data)   

1, 2, 3   

Npop    N : Population   1,000   

beta1    : Infection rate (When obs. data generated)   0.4   

gam1    : Recovery rate (When obs. data generated)   0.04   

c1    
c: Observation coefft. (When obs. data generated: Ratio to the true data）   

0.25   

S1[0]    S0 : Initial no of susceptible(When obs. data generated)   997   

I1[0]    I0 : Initial no of current infected (When obs. data generated)   3   

R1[0]    R0 : Ini. No of recovered (When obs. data generated)   0   

sgmObs1   Obs Std. dev. of obs. (When obs. data generated)   0.25   

T   Observation period   100   

dt   Observation step   0.1   

oSkp   Time step of sampling obs. data   10   

dlmd   Parameter Differentiation of during numerical diff. (std. val.)   1.0*10-7   
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lmd   Moving step at hill-climbing (std. val.)   1.0*10-7   

iEnd   No. of convergence cal. at hill-climbing (std. val.)   30,000   

   The initial values of infection rate , recovery rate , initial number of infected people 

I0 , observation coefficient c, and observation data std. dev. Obs when searching for 

the maximum probability value by the hill-climbing method are 0.8 times the set 

value at the time of observation data generation. However, I0 converges slowly, so 

use the set value.   

   

3.2. Data Assimilated Numerical Simulation    

The calculation assumes five unknown parameters: infection rate , recovery rate , initial number of infected 

people I0 , observation coefficient c , and standard deviation Obs of observation data noise. Since the 

convergence of the hill-climbing method is slow, it would be realistic to make it given. And, it may not be 

necessary to make the standard deviation Obs of the observed data unknown, but it will be supposed to be 

unknown below.  

(A) The setting of virtual infection status   

 
(B) The Effects of the Skipping of Observation Step   

In order to ensure the accuracy of integration of the system model, we want to calculate in a 0.1-day time step. 

Time integration is performed by the Euler method. On the other hand, the actual observation data is given on 

a daily basis. Table 2 and Fig. 2 show the effects when the time step of integration of the system model and 

the time step of observation are not the same. The parameter I0 was set to I0 3 for the above reasons.   

Table *2. Effects of Observation Skipping on Data Assimilation.   

Parameter   
Set  

Value   

Skipping of Time Step for Observation   

No Skipping   
Observation Every 10 

Steps   

: Infection Rate    0.4   0.3980   0.3931   

: Retired Ratio    0.04   0.0366   0.0399   

Figure 1 shows the actual infection status according to the settings in Table 1. A description of the symbols is  

in Table 1.    is the basic reproduction number:    

  

Fig. 1. Setting of Assumed Virtual State of Infection.    

(   )   SN       .                                                                                          (20)       
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c: Observation Coefft.    0.25   0.2699   0.2769   

2 : Variance of Observed Data  
Obs 

0.252   0.27162   0.25902   

 
(C) Comparison of Observation Data   

The observation data PrsI , DlyI and AccI are compared below. The comparison results are shown in Table 3 

and Fig. 3. In the present calculation, there was a problem with data assimilation by AccI .  As shown in Table 

3, the recovery rate  is not accurate enough. Looking at Fig. 3, it is clear that the case of AccI is incorrect.   

Table 3. Effects of Observation mode on Data Assimilation.   

Mode   
Set  

Value   

PrsI :   

Present   

Infection   

DlyI : Daily  

Infection   

AccI :  

Accumulated  

Infection   

: Infection Rate    0.4   0.3980   0.3982   0.3684   

: Retired Ratio    0.04   0.0366   0.0402   0.0109   

c: Observation Coefft.   0.25   0.2699   0.2653   0.2812   

2 : Variance of Observed 

Data  Obs 

0.252   0.27162   0.25842   0.25942   

    

Fig. *2. Effects of Observation   Skipping on Data Assimilation.     
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The daily and cumulative number of infected people reflects data on infected people but does not reflect data 

on those who leave the infection. PrsI , which reflects both the infection rate  and the recovery rate , can be 

said to be the best observation data. However, the observation data cannot be obtained from the currently 

published data. In the case of DlyI and AccI , it is better to exclude the recovery rate  from the estimation and 

to estimate a fixed value by some method. Table 4 and Fig. 4 show the results in that case.  

Table 4. Effects of Fixing Retired Rate   on Data Assimilation.   

Mode   Set Value   AccI : Accumulated Infection   

: Infection Rate    0.4   0.3915   

: Retired Rate    0.04   0.04 (Given)   

c: Observation Coefficient    0.25   0.2817   

2 : Variance of Observed 

Data   

0.252   0.25922   

 
(D) Predictive characteristics of data assimilated simulation   

Obs  

    

    

Fig. 3. Effects of Observation mode on Data Assimilation.    

    

    

    

Fig. 4. Effects of Fixing Retired Rate    on Data Assimilation.     
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Table 5 and Fig. 5 show the results of data assimilated simulation using the number of currently infected 

people   

PrsI as the observation data. It can be seen that even if the learning period is short, the infection state for the 

entire Period (100 days) can be predicted fairly accurately.    

Table 5. Prediction of State of Infection (PrsI; TS: Days for Study).   

Mode   
Set  

Value   
TS=10   TS=20   TS=50   TS=100   

: Infection Rate    0.4   0.4045   0.4035   0.3998   0.3933   

: Retired Ratio    0.04   0.0343   0.0342   0.0374   0.0398   

c: Observation Coefft.   0.25   0.2463   0.2462   0.2592   0.2763   

2 : Variance of  
Obs 

     

Observed Data   0.252   0.21692   0.21712   0.23452   0.25872   

   

 
(E) Effect of social infection control   

Infectious diseases can be controlled by social measures such as wearing masks, social distance, and 

controlling human flow. These effects manifest themselves as effective changes in infection rates. Table 6 

shows the parameter settings during the numerical simulation, and Fig. 6 shows the virtual data observation 

results and the data assimilated simulation results. The number of currently infected people PrsI is used as 

observation data.   

 Fig. 6 (a) shows the virtual infection state performed to generate the observation data. It is assumed that the 

effective infection rate  was reduced from 0.2 to 0.04 with 80% control by two states of emergency 

declarations made to prevent the spread of infection. Looking at the data assimilated simulation results in Fig. 

    

    

Fig. 5. Prediction of State of Infec tion (PrsI; TS: Days for  Study)   
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6 (b), it is clear that the virtual infection state is reproduced. However, in this data assimilated simulation, only 

the infection rate  is set as an unknown variable in order to stably converge the parameters.   

In this problem, the infection rate  changes with time, so it is not possible to perform a batch calculation for 

the entire calculation time T. The calculation is performed assuming that 10 days is one stage and the 

parameters are constant in each stage.  Table 6. Parameters for Numerical Simulation   

Name in 

Code  

Definition   Value   

mode   PrsI (Currently number of infected people is used as 

observation data)   

1   

Npop   N : Population   32,000   

beta1   : Infection rate (When obs. data generated)   0.2   

gam1   : Recovery rate (When obs. data generated)   0.05   

c1   c: Observation coefft. (When obs. data generated: Ratio to the 

true data）   

0.7   

S1[0]   S0 : Initial no of susceptible(When obs. data generated)   31,998   

I1[0]   I0 : Initial no of current infected (When obs. data generated)   2   

R1[0]   R0 : Ini. No of recovered (When obs. data generated)   0   

sgmObs1   Obs Std. dev. of obs. (When obs. data generated)   0.25   

T   Observation period   360   

dt   Observation step   0.1   

oSkp   Time step of sampling obs. data   10   

dlmd   Parameter Differentiation of during numerical diff. (std. val.)   1.0*10-8   

lmd   Moving step at hill-climbing (std. val.)   2.0*10-7   

iEnd   No. of convergence cal. at hill-climbing (std. val.)   50,000   

   The entire period (360 days) is calculated by dividing it into 36 

stages where 1 stage means 10 days.   

The maximum probability is searched by the hill-climbing 

method, using only the infection rate  as an unknown 

parameter to make the convergence stable. The initial value of 

the infection rate is 0.8 times the set value at the   

   

  generation of the observation data.     
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Fig. 6. Data Assimilatd Infection State.   

4. DATA ASSIMILATED NUMERICAL SIMULATION USING REAL DATA   

Unlike the case of virtual data assimilation using virtually created virtual observation data, real data 

assimilated simulation using actually observed real data is not straightforward. The study has just begun, as it 

seems to contain a variety of issues.   

In the handling of COVID-19 in Japan, the persons found infected are quarantined and the infectivity is 

contained, so that amount must be subtracted from the presently infected persons I in the calculation of the 

newly infected person. Applying SIR theory to real data is problematic. However, if the spread of infection is 

not sufficiently isolated, the outline can be grasped by using SIR theory for the time being. As a result, the 

infection rate will be underestimated.   

Although the observation data of Tokyo was used, the SIR equation, which is the mean-field theory, cannot 

be used as it is. The population of Tokyo is about 14 million, but the effective infection opportunity population 

involved in the infection at the time is only a small part of it. It increases with the spread of infection. In the 

following calculation, it is considered that the infection spreads in a ring shape at a constant rate, and it is 

considered that the infection increases with a linear function of time. As a result of trial and error, 16,000 

people at 120 days and 200,000 people at 370 days. The numerical value connecting the two points with a 

straight line was taken as N .   

As an observation model for real data, the following expression was used:   

  OAccI n  cIAccI n  n ,(n  1,2,, N) .                                                              (21)  The parameters used in 

the data assimilated simulation are shown in Table 7, the data observation results are shown in Fig. 7, and 

the assimilated simulation results are shown in Fig. 8.    

Until now, the phenomenon of infection wave could not be rationally reproduced in the calculation. If people's 

social activities are changed by a state of emergency, etc., the infection rate will change over time, causing 

wave motion. The infection waves have been successfully reproduced.   

  

    

( a )   Virtual Infection State    

    

( b )   Data Assimilatd Infection State    
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Comparing the 120-day analysis results in Fig. 8 with the 370-day analysis results, there is a difference in the 

results for the first 120 days, which should be the same. This is because, when applying the mean-field theory, 

the number of people who have the chance of infection is different from 16,000 and 200,000. The solution to 

this problem is a future problem, but it can be said that the current calculation results do not deny the validity 

of this calculation method.   

In this calculation, only the infection rate  is an unknown parameter. In order to make other parameters 

unknown, at least observation data that reflects the effect of the recovery rate  will be required. Since only the 

infection rate  is unknown, it seems that the temporal changes in other parameters are not sufficiently reflected 

in the changes in the infection rate .   

In addition, the infection rate that appears in the actual infection phenomenon is not a pathologically defined 

infection rate with strictly defined conditions, but an effective infection rate that takes into account social 

impacts such as wearing masks, social distance, and human flow. The infection rate in Fig. 8 is such, and the 

effect of artificially suppressing infection by declaring an emergency is reflected some extent.  Table 7 List 

of Parameters.   

Name Code   in  Definition   Value   

mode    AccI (Cumulative number of infected people is used as observation data)   3   

Npop    N : Effective Infective opportunity Population (Given at each stage)   16,000–   

200,000   

beta1    : Infection rate (Initial value for convergence calculation)   0.2   

gam1    : Recovery rate (Given at the beginning)   0.05   

c1    c: Observation coefft. (Given at the beginning）   0.6   

S1[0]    S0 : Initial no of susceptible(Given at the beginning)   31,998   

I1[0]   I0 : Initial no of current infected (Given at the beginning )   15,999  –  

199,999   

R1[0]   R0 : Ini. Number of recovered (Given at the beginning)   0   

sgmObs1   Obs Std. dev. of obs. (Given at each stage)   240–4,000   

T   Observation period   370   

dt   Observation step   1   

oSkp   Time step of sampling obs. data   1   

dlmd   Parameter Differentiation of during numerical diff. (std. val.)   1.0*10-8   

lmd   Moving step at hill-climbing (std. val.)   2.0*10-7   

iEnd   No. of convergence cal. at hill-climbing (std. val.)   32,000   
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   The entire period (370 days) is calculated by dividing it into 37 stages where 1 

stage means 10 days.   

The maximum probability is searched by the hill-climbing method, using only 

the infection rate  as an unknown parameter to make the convergence stable. The 

initial value of the infection rate is 0.8 times the set value at the generation of the 

observation data.   

   

   

   
Fig. 7. Observed Infection Data.   
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5. CONCLUSIONS   

The new coronavirus infection (COVID-19) is rampant. Even now, more than a year after the start of the 

infection, the infection has not yet shown signs of ending. It can be said to be an infection that remains in 

history.   

The most troublesome part of this infection is that it not only takes several days from infection to onset, but it 

also infects for several days even in the not-onset state. Therefore, a considerable number of infected persons 

with infectivity are left unchecked. Therefore, even if the infection status is simulated by the SIR equation 

[13], the true values of the infection parameters and the number of infected persons cannot be grasped.   

However, it may be possible to estimate the true value by combining it with the observation equation. In short, 

a state-space model or a data assimilation framework is considered to be effective. The parameters of the SIR 

equation, such as the daily number of new infections, infection rate, and eviction rate, are unknown but 

  

Fig. 8. Data Assimilation Results Using Observation Data of Tokyo (2020.03.13  -   2021.03.17)     
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embedded in the observed values. Unknown parameters must match the observed values. Wouldn't it be 

possible to determine these unknowns by combining them using Bayesian inference and the method of least 

squares? This effectiveness could be confirmed by the numerical results.   

Numerical calculations were performed not only when the observation data was artificially generated, but also 

when the actually published observation data was used. In the former case, consistent results were obtained 

for all observed data of the current number of infected persons, the number of newly infected persons on a 

daily basis, and the cumulative number of infected persons. Regarding the latter, the daily number of newly 

infected persons and the cumulative number of infected persons were used as observation data, and in this 

case as well, consistent results were obtained regardless of which observation data was used.   

However, the daily number of newly infected persons and the cumulative number of infected persons reflect 

the infection rate , but do not reflect the eviction rate. As the observation data required for data assimilation, 

good data that reflects the eviction rate  is absolutely necessary.   

For virus mutant strains, the current concept of time-varying parameters is sufficient, but for the effect of the 

vaccines, it is necessary to subtract the vaccinated persons from the infected persons S. The author would also 

like to use the infection equation including the effect of the vaccine.   

However, efforts to assimilate data that combine the mathematical theory and observational data of the time 

evolution of infectious diseases have only just begun, and many issues have not been fully considered. The 

current method of collecting and organizing statistical data on infectious diseases is not premised on being 

used for data assimilation. On the premise of introducing data assimilation, it will be necessary to rethink the 

way statistical data should be.   
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