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Abstract: The integration of Distributed Generators (DG) into Radial Distribution Systems (RDS) has 

emerged as a promising solution for minimizing power losses and enhancing the voltage profile in power 

systems. This paper investigates the effect of varying the number and power factor of DG on its optimal 

allocation in RDS. The Grey Wolf Optimization (GWO) algorithm is used to propose an alternative 

optimization approach for the optimal allocation of DG in RDS. The Direct Load Flow method is utilized to 

analyze the power flow in the system. The study compares the appropriate DG allocation in IEEE 33 and 69 

bus RDS under different DG parameters, including types of DG, problem statements, objective functions, 

constraints, load flow analysis, and simulation results. The results demonstrate that the optimal placement and 

sizing of DG can significantly reduce power losses and improve the voltage profile in RDS. The paper 

concludes that the use of renewable sources of energy like DG can enhance the performance of the radial 

system, but improper allocation can lead to adverse effects. 
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1. Introduction 

The depletion of fossil fuel deposits alongside the need to reduce greenhouse gas emissions has driven the 

integration of renewable energy sources like Distributed Generators (DG) into Radial Distribution Systems 

(RDS) for improved power quality. DG placement and sizing optimization is crucial to minimize power losses 

and enhance the voltage profile of RDS. Several optimization strategies have been proposed to achieve 

distribution system objectives, including analytical and heuristic methods. This paper investigates and 

compares the effect of variation in the number and power factor of DG on its optimal allocation in RDS using 

the Grey Wolf Optimization (GWO) algorithm. The Direct Load Flow method is used to handle power flow 

in the system. The study computes and compares the optimal DG allocation for IEEE 33 and 69 bus RDS 

under different DG parameters. The paper presents the types of DG, problem statements, objective functions, 

constraints, load flow analysis, and simulation results. Results show that the optimal placement and sizing of 

DG can significantly reduce power losses and improve the voltage profile in RDS. However, improper 

allocation can lead to adverse effects. The study concludes that the use of renewable sources of energy like 
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DG can boost the performance of the radial system, and the GWO algorithm presents an alternative 

optimization approach for the optimal allocation of DG in RDS. 

2. Types of DG 

Based on its terminal features in terms of real power (P) & reactive power (Q) providing capabilities, DG may 

be divided into 

Type A: DG is solely capable of injecting P consisting of convertor/inverter-integrated photovoltaic, 

microturbine, and fuel cell power sources 

 
Type B: DG is solely capable of injecting Q consisting of synchronous compensators, i.e., gas turbines. 

 
Type C: DG with the ability to infuse both P and Q mainly synchronous-machine-based DG units 

(cogeneration, gas turbine, etc.) 

 
Type D: DG can infuse P but deplete Q comprising mainly of wind farm induction generators. 

 
where PDGA, PDGC and PDGD are the active power injected by DG & QDGB and QDGC are the reactive power 

injection whereas QDGD represents the reactive power demand by the DG. 

3. Problem Statement 

3.1 Objective Function: Minimize: 

 
Constraints 

Voltage constraint: To maintain the system's power quality, the voltage at each node must continue to operate 

within reasonable bounds. 

 
where Vmin& Vmax are the lower and upper limits, Vn the voltage of nth node and N the total nodes in the 

network. Thermal Constraint: The network's branch currents must all be well within the conductor's maximum 

thermal capacity. 

 
where In and Irated is the mth branch and maximum allowable branch current respectively 

DG capacity constraint: Every integrated DG unit's total active power generation must be less than the 

network's total active power consumption; otherwise, power would flow back. 

 
where PDGi the active power injection and PLi the load connected to the ith node. 

3.2Load Flow Analysis: The distribution system is predominantly radial or weakly meshed with unbalanced 

loading due to the ever-changing load demand of various consumers, an immense number of nodes and 

branches, as well as resistance and reactance valuing large spans of the spectrum. The high R/X ratio causes 

high power losses in the system. Due to the above-stated features, traditional load-flow methods like Gauss-

Seidel & Newton-Raphson fail to render the performance and robustness criteria and the assumptions of fast-

decoupled NR method are invalid in distribution system. As a result, forward and backward sweep, as well as 



Teng, J. H (2023) 

 

41 
SADI International Journal of Science, Engineering and Technology | 

https://sadipub.com/Journals/index.php/SIJSET/index 

 

DLF method, are the most common load-flow approaches adopted in the distribution network. In this work, 

DLF technique (Teng, 2003) has been used to perform the load-flow analysis saving profuse time and befitting 

for online application. 

4. Grey Wolf Optimization 

In 2014, SyedaliMirjalili et al.(Mirjalili et al., 2014), presented a novel population-based meta-heuristic 

optimization method called “Grey Wolf Optimizer” (GWO). The inspiration behind this algorithm is the 

hunting mechanism & social hierarchy of the Pack of grey wolves. The pack have stringent social dominant 

hierarchy where the alphas are leaders and primarily responsible for decision-making and are imposed on the 

pack. Although the alpha is not the strongest member of the pack, he is the greatest at controlling it. The betas, 

the best candidate for replacing alphas, are second to alphas assisting them in making decisions by reinforcing 

the alpha's order across the pack, as well as providing feedback to the alpha. The omegas are the lowest in the 

power pyramid and have to follow the rest and the remaining wolves are the deltas which submit to alpha and 

betas but dominate the omegas. Along with social hierarchy, wolves engage in collective hunting, which entails 

tracking, pursuing, surrounding, and eventually attacking exhausted victims. 

Optimal placement of DGs: Input Data: Bus Data Output: Optimal allocation Initialization: 

1. DLF 

 Loop Process 

2. Run GWO till Maxiter reached 

3. Search agents—Randomly generated 

   Position of wolves—initialized 

4. Objective Function-Calculate Ploss by calling DLF 

5. If (Ploss violates constraints) — Discard Solution 

6. else — Update position of wolves 

7. If (Obtained position better than previous run) — Discard previous solution 

8. else — Rerun GWO 

4. Simulation Results 

The differences in the characteristics that are compared among the two techniques taking GA as base case, as 

shown in Table 1 have a minute difference in values, but the average time taken for computation of the same 

set of values is considerable for a test case with a limited number of iterations and program runs. The authors 

observe that the computation time for GWO technique is much less compared to PSO & GA for the IEEE-33 

bus test RDS with 600 iterations on a single run with comparable accuracy. 

Table 1. Comparison of various Optimization. 

Method Results Avg. Time 

GA 2590.287 [6] 29.816 sec 

PSO 2590.217 [6] 7.937 sec 

GWO 2590.252 [6] 4.67 sec 

4.1 Effect on Voltage Profile & Power Losses of IEEE 33 bus RDS 

In the instance of IEEE 33 bus RDS, the total load drawn from the substation is 3715 kW and 2300 kVAR. 

According to the loadflow study done using DLF on the test system without installing DG, the total active 

power loss amounts to 210.98 kW while the total reactive power is 143.02 kVAR, with the minimum voltage 

being 0.90378 p.u at the bus no. 18. 
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Figure 1. Variation of Voltage Profile in IEEE 33 bus RDS with implementation of various DGs. 

Voltage Profile: Figure 1. represents the effect of the change in the number & power-factor of DG on the 

voltage profile, utilizing the aforementioned optimization approach and conducting the load flow analysis; the 

new voltage profile on the application of DG at the ideal position and the size determined shows the minimum 

value after DG implementation is more significant than the base case and keeps improving on increasing 

number of DGs and as the pf moves to its optimal value of 0.82378 pf lag. 

 
Figure 2. Variation in Total Power Losses of IEEE 33 bus RDS with implementation of various DGs. 

Power Losses:Figure 2. indicates the decrease in the total active and reactive power losses on implementing 

of various DGs with the total power loss saving of 99.95 kW, 140.12 kW, 142.81 kW, 143.12 kW when 

implementing single DG at Unity power factor (UPF), 0.9 pf lag, 0.85 pf lag, optimal value of 0.82378 pf lag 

respectively & 123.82 kW on the implementation of multiple DG at UPF. Table 2 represents the variation of 

parameters on DG allocation. 
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Table 2. Effect of various Type of DGs on IEEE 33 bus RDS. 

Parameters 

DG Allocation 

Size (Location) 

(kVA) 

Total Ploss 

(kW) 

Total Qloss 

(kVAR) 
%Ploss Reduction % Qloss Reduction 

Min Voltage 

p.u (Bus) 

Base Case - 210.982 143.022 - - 0.9038 (18) 

SingleDG UPF 2590.252 (6) 111.03 81.682 47.37% 42.88% 0.9424 (18) 

Single DG 0.9 lag 3073.499 (6) 70.862 57.762 66.41% 60.31% 0.9575 (18) 

Single DG 0.85 lag 3103.022 (6) 68.169 55.044 67.69% 61.51% 0.9584 (18) 

Single DG Optimal pf 3106.561 (6) 67.868 54.828 67.83% 61.67% 0.9584 (18) 

Multi DG 
851.525 (13) 

1157.576 (30) 
87.166 59.773 58.68% 58.31% 0.9685(33) 

4.2 Effect on Voltage Profile & Power Losses of IEEE 69 bus RDS 

In the instance of IEEE 69 bus RDS, the total load drawn from the substation is 3802.6 kW and 2694.6 kVAR. 

According to the load-flow study done using DLF on the test system without installing DG, the total active 

power loss amounts to 224.9887 kW while the total reactive power is 102.17 kVAR, with the minimum voltage 

being 0.90919 p.u at the bus no. 65. 

 
Figure 3. Variation in Voltage Profile of IEEE 69 bus RDS with implementation of various DGs. 

Voltage Profile: Figure 3. represents the effect of the change in the number & power-factor of DG on the 

voltage profile, utilizing the aforementioned optimization approach and conducting the load flow analysis; the 

new voltage profile on the application of DG at the ideal position and the size determined shows the minimum 

value after DG implementation is more significant than the base case and keeps improving on increasing 

number of DGs and as the pf moves to its optimal value of 0.81496 pf lag. 
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Figure 4. Variation in Total Power Losses of IEEE 69 bus RDS with implementation of various DGs. 

Power Losses:Figure 4. indicates the decrease in the total active and reactive power losses on implementing 

of DGs with the total power loss saving being 141.77 kW, 197.03 kW, 201.13 kW, 201.824 kW when 

implementing single DG at UPF, 0.9 pf lag, 0.85 pf lag, and optimal value of 0.81496 pf lag & 153.32 kW 

when implementing multiple DG at UPF. Table 3 represents the variation of parameters on DG allocation. 

Table 3. Effect of various Type of DGs on IEEE 69 bus RDS. 

Parameters 

DG Allocation 

Size (Location) 

(kVA) 

Total Ploss 

(kW) 

Total Qloss 

(kVAR) 
%Ploss Reduction % Qloss Reduction 

Min Voltage 

p.u (Bus) 

Base Case - 224.998 102.166 - - 0.9092 (65) 

Single DG UPF 1872.823 (61) 83.228 40.541 63.01% 60.32% 0.9683 (27) 

Single DG 0.9 lag 2217.441 (61) 27.964 16.46 87.57% 83.89% 0.9724 (27) 

Single DG 0.85 lag 2240.445 (61) 23.869 14.673 89.29% 85.64% 0.9726 (27) 

Single DG Optimal pf 2244.142 (61) 23.174 14.382 89.70% 85.92% 0.9725 (27) 

Multi DG 
531.523 (17) 

1781.579 (61) 
71.679 35.943 68.14% 64.82% 0.9789 (65) 

4. Conclusions 

In this paper power loss minimization is achieved with the deployment of DG by either increasing the number 

or tweaking the pf of DG thereby reducing the cost of energy along with significant improvements to the 

voltage profile. This enhances the system's efficiency, reliability and quality of power. The authors conclude 

that altering the pf from unity to the optimum value reduces power losses more prominently than increasing 

the number of DGs. On the other hand, increasing the number of DGs rather than altering the pf improves 
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voltage profile significantly better. As a result, a trade-off must be made between the two DG variants, which 

can be extremely useful for deploying DGs in RDS according to the requirements. The authors find that the 

computation time for the GWO approach is significantly smaller than that of the PSO and GA techniques with 

equivalent accuracy. This approach may be used to realistic load models with DGs and FACTS controllers as 

well as practical systems that can save a significant amount of time and storage space. 
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