A HOLISTIC APPROACH TO UNDERSTANDING AND MANAGING PEDIATRIC HEART ABNORMALITIES
Keywords:
congenital heart defects, heart perforations, heart valve problems, cyanosis, fetal echo, diagnosis, treatment, preventive measuresAbstract
Congenital heart defects, including holes in the heart, are commonly misunderstood by the general population. This paper aims to provide a comprehensive overview of various congenital heart conditions affecting children, focusing on their types, potential causes, diagnostic methods, treatment options, and preventive measures. Before birth, the developing heart may exhibit small holes or cavities in the muscular septum that partitions the heart's right and left sides. The etiology of these anomalies remains unclear, but a significant proportion of these defects, around 70%, spontaneously resolve either prior to or shortly after birth. However, cases where these holes persist might necessitate surgical intervention, the specifics of which depend on the hole's size and location. This review categorizes heart perforations in children into secundum, primus, and sinus venosus types. While secundum perforations often close without intervention, the rarer sinus and sinus venosus perforations typically require surgical correction. Children may also experience heart valve obstructions, with valve-related complications being a significant concern. Additionally, other conditions like translocated blood vessels and mitral valve issues further compound the complexity of these heart defects. Rheumatic fever is highlighted as a potential trigger for heart valve problems, with its implications extending to heart valve displacement. The resultant mixing of oxygen-rich and oxygen-poor blood leads to cyanosis, a condition where affected children display a bluish skin tint. Timely intervention through surgery can address this issue and achieve a permanent cure in 80% of cases. Preventive measures are crucial, with fetal echo tests offering a diagnostic opportunity as early as the 16th week of gestation. Factors such as family history of heart problems, maternal drug and alcohol consumption during pregnancy, maternal health conditions like diabetes and rubella, consanguineous marriages, and hypoxia should guide the decision to undertake fetal echo testing. This comprehensive overview emphasizes the significance of timely diagnosis, proper medical management, and a proactive approach to mitigating congenital heart defects in children, contributing to improved outcomes and enhanced quality of life.
Published
How to Cite
Issue
Section
Copyright (c) 2023 International Journal of Interdisciplinary Research in Statistics, Mathematics and Engineering (IJIRSME)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Burke, M., Sinha, P., Luban, N. L., & Posnack, N. G. (2021). Transfusion-associated hyperkalemic cardiac arrest in neonatal, infant, and pediatric patients. Frontiers in Pediatrics, 9, 765306.
Jiwani, N., Gupta, K., & Afreen, N. (2022, April). A Convolutional Neural Network Approach for Diabetic Retinopathy Classification. In 2022 IEEE 11th International Conference on Communication Systems and Network Technologies (CSNT) (pp. 357-361). IEEE.
Dainty, K. N., Atkins, D. L., Breckwoldt, J., Maconochie, I., Schexnayder, S. M., Skrifvars, M. B., ... & Yeung, J. (2021). Family presence during resuscitation in paediatric and neonatal cardiac arrest: A systematic review. Resuscitation, 162, 20-34.
Bose, S. N., Verigan, A., Hanson, J., Ahumada, L. M., Ghazarian, S. R., Goldenberg, N. A., ... & Jacobs, J. P. (2019). Early identification of impending cardiac arrest in neonates and infants in the cardiovascular ICU: a statistical modelling approach using physiologic monitoring data. Cardiology in the young, 29(11), 1340-1348.
Aggelina, A., Pantazopoulos, I., Giokas, G., Chalkias, A., Mavrovounis, G., Papalois, A., ... & Iacovidou, N. (2021). Continuous chest compressions with asynchronous ventilation improve survival in a neonatal swine model of asphyxial cardiac arrest. The American Journal of Emergency Medicine, 48, 60-66.
Futterman, C., Salvin, J. W., McManus, M., Lowry, A. W., Baronov, D., Almodovar, M. C., ... & Gazit, A. Z. (2019). Inadequate oxygen delivery index dose is associated with cardiac arrest risk in neonates following cardiopulmonary bypass surgery. Resuscitation, 142, 74-80.
Hunfeld, M., Ketharanathan, N., Catsman, C., Straver, D. C., Dremmen, M. H., Bramer, W., ... & Buysse, C. (2020). A systematic review of neuromonitoring modalities in children beyond neonatal period after cardiac arrest. Pediatric Critical Care Medicine, 21(10), e927-e933.
Massey, S. L., Abend, N. S., Gaynor, J. W., Licht, D. J., Nadkarni, V. M., Topjian, A. A., ... & Naim, M. Y. (2019). Electroencephalographic patterns preceding cardiac arrest in neonates following cardiac surgery. Resuscitation, 144, 67-74.
Disma, N., Virag, K., Riva, T., Kaufmann, J., Engelhardt, T., Habre, W., ... & Weiterer, S. (2021). Difficult tracheal intubation in neonates and infants. NEonate and Children audiT of Anaesthesia pRactice IN Europe (NECTARINE): a prospective European multicentre observational study. British journal of anaesthesia, 126(6), 1173-1181.
Edelson, D. P., Sasson, C., Chan, P. S., Atkins, D. L., Aziz, K., Becker, L. B., ... & Topjian, A. A. (2020). Interim guidance for basic and advanced life support in adults, children, and neonates with suspected or confirmed COVID19: from the emergency cardiovascular care committee and get with the guidelines-resuscitation adult and pediatric task forces of the American Heart Association. Circulation, 141(25), e933-e943.
Law, M. A., Benscoter, A. L., Borasino, S., Dewan, M., Rahman, A. F., Loomba, R. S., ... & Alten, J. A. (2022). Inferior and superior vena cava saturation monitoring after neonatal cardiac surgery. Pediatric Critical Care Medicine, 23(7), e347-e355.
Sankaran, D., Vali, P., Chandrasekharan, P., Chen, P., Gugino, S. F., Koenigsknecht, C., ... & Lakshminrusimha, S. (2021). Effect of a larger flush volume on bioavailability and efficacy of umbilical venous epinephrine during neonatal resuscitation in ovine asphyxial arrest. Children, 8(6), 464.
Wagner, M., Cheung, P. Y., Yaskina, M., Lee, T. F., Vieth, V. A., O'Reilly, M., & Schmölzer, G. M. (2021). Return of spontaneous circulation depends on cardiac rhythm during neonatal cardiac arrest in asphyxiated newborn animals. Frontiers in Pediatrics, 9, 641132.
Sanford, E., Jones, M. C., Brigger, M., Hammer, M., Giudugli, L., Kingsmore, S. F., ... & Bainbridge, M. N. (2020). Postmortem diagnosis of PPA2-associated sudden cardiac death from dried blood spot in a neonate presenting with vocal cord paralysis. Molecular Case Studies, 6(5), a005611.
Wu, S. H., Li, R. S., & Hwu, Y. M. (2019). Live birth after perimortem cesarean delivery in a 36-year-old out-ofhospital cardiac arrest nulliparous woman. Taiwanese Journal of Obstetrics and Gynecology, 58(1), 43-45.
Kim, M., Okunowo, O., Ades, A. M., Fuller, S., Rintoul, N. E., & Naim, M. Y. (2021). Single-center comparison of outcomes following cardiac surgery in low birth weight and standard birth weight neonates. The Journal of Pediatrics, 238, 161-167.
Moore, J. P., Gallotti, R. G., Shannon, K. M., Bos, J. M., Sadeghi, E., Strasburger, J. F., ... & Ackerman, M. J. (2020). Genotype predicts outcomes in fetuses and neonates with severe congenital long QT syndrome. Clinical Electrophysiology, 6(12), 1561-1570.
Vali, P., Sankaran, D., Rawat, M., Berkelhamer, S., & Lakshminrusimha, S. (2019). Epinephrine in neonatal resuscitation. Children, 6(4), 51.
Jiwani, N., Gupta, K., & Whig, P. (2021, October). Novel healthcare framework for cardiac arrest with the application of AI using ANN. In 2021 5th international conference on information systems and computer networks (ISCON) (pp. 1-5). IEEE.
Garcia-Marcinkiewicz, A. G., & Matava, C. T. (2022). Safe in the first attempt: Teaching neonatal airway management. Current Opinion in Anaesthesiology, 35(3), 329-336.
Disma, N., Veyckemans, F., Virag, K., Hansen, T. G., Becke, K., Harlet, P., ... & Zacharowski, K. (2021). Morbidity and mortality after anaesthesia in early life: results of the European prospective multicentre observational study, neonate and children audit of anaesthesia practice in Europe (NECTARINE). British journal of anaesthesia, 126(6), 1157-1172.
Luong, D., Cheung, P. Y., Barrington, K. J., Davis, P. G., Unrau, J., Dakshinamurti, S., & Schmölzer, G. M. (2019). Cardiac arrest with pulseless electrical activity rhythm in newborn infants: a case series. Archives of Disease in Childhood-Fetal and Neonatal Edition, 104(6), F572-F574.
Kuan, C. C., & Shaw, S. J. (2020). Anesthesia for major surgery in the neonate. Anesthesiology Clinics, 38(1), 118.
Foglia, E. E., Davis, P. G., Guinsburg, R., Kapadia, V., Liley, H. G., Rüdiger, M., ... & International Liaison Committee on Resuscitation Neonatal Life Support Task Force. (2023). Recommended Guideline for Uniform RTHCArting of Neonatal Resuscitation: The Neonatal Utstein Style. Pediatrics, e2022059631.
Naim, M. Y., Putt, M., Abend, N. S., Mastropietro, C. W., Frank, D. U., Chen, J. M., ... & Kimmel, S. E. (2021). Development and validation of a seizure prediction model in neonates after cardiac surgery. The Annals of Thoracic Surgery, 111(6), 2041-2048.
Graham, E. M., Martin, R. H., Buckley, J. R., Zyblewski, S. C., Kavarana, M. N., Bradley, S. M., ... & Atz, A. M. (2019). Corticosteroid therapy in neonates undergoing cardiopulmonary bypass: randomized controlled trial. Journal of the American College of Cardiology, 74(5), 659-668.
Stein, M. L., Quinonez, L. G., DiNardo, J. A., & Brown, M. L. (2019). Complications of transthoracic intracardiac and central venous lines in neonates undergoing cardiac surgery. Pediatric Cardiology, 40, 733-737.
Gupta, K., Jiwani, N., & Afreen, N. (2022, April). Blood Pressure Detection Using CNN-LSTM Model. In 2022 IEEE 11th International Conference on Communication Systems and Network Technologies (CSNT) (pp. 262366). IEEE.
Amodeo, I., Di Nardo, M., Raffaeli, G., Kamel, S., Macchini, F., Amodeo, A., ... & Cavallaro, G. (2021). Neonatal respiratory and cardiac ECMO in Europe. European journal of pediatrics, 180, 1675-1692.
Sillers, L., Handley, S. C., James, J. R., & Foglia, E. E. (2019). Pulseless electrical activity complicating neonatal resuscitation. Neonatology, 115(2), 95-98.
Miura, S., Jardim, P. V., Butt, W., & Namachivayam, S. P. (2020). Extubation failure and major adverse events secondary to extubation failure following neonatal cardiac surgery. Pediatric Critical Care Medicine, 21(12), e1119-e1125.
Mani, S., Gugino, S., Helman, J., Bawa, M., Nair, J., Chandrasekharan, P., & Rawat, M. (2022). Laryngeal mask ventilation with chest compression during neonatal resuscitation: randomized, non-inferiority trial in lambs. Pediatric Research, 92(3), 671-677.