OPTIMIZING WIND FARM LAYOUTS USING HISTORICAL DATA AND COMPUTATIONAL FLUID DYNAMICS: A COMPUTATIONAL FRANDSEN WAKE MODEL AND DIFFERENTIAL EVOLUTION ALGORITHM

https://doi.org/10.5281/zenodo.13772577%20

Authors

  • Osadolor Alexander Osayimwense Center for Sustainable Engineering, School of Computing, Engineering and Digital Technologies, Teesside University, United Kingdom
  • Showole Afeez Olamide Center for Sustainable Engineering, School of Computing, Engineering and Digital Technologies, Teesside University, United Kingdom
  • Asamoah Gideon Akwasi Center for Sustainable Engineering, School of Computing, Engineering and Digital Technologies, Teesside University, United Kingdom
  • Eze Tochukwu Judethaddeus Center for Sustainable Engineering, School of Computing, Engineering and Digital Technologies, Teesside University, United Kingdom

Keywords:

SCADA Data Analysis, Renewable Energy, Sustainability, Wind Turbine Spacing, Wind Turbine Performance, Differential Evolution Algorithm

Abstract

The increasing demand for sustainable energy solutions has heightened the importance of optimizing wind farm layouts to enhance efficiency and energy output. This study investigates the optimization of wind turbine placement using historical SCADA data, computational fluid dynamics (CFD), and Differential Evolution (DE) algorithms. We analyzed a comprehensive wind turbine dataset, which included wind speed, active power, theoretical power curves, and wind direction data. The analysis revealed a direct relationship between wind speed and power output, with discrepancies observed at both low and high wind speeds due to system inefficiencies and turbine power limits. The Frandsen wake model was employed to account for the wake losses, while the Differential Evolution algorithm was used to optimize the turbine positions to develop an optimal layout for 100 turbines within a minimum area of 21.6 km², aiming to minimize the wake effects and maximize the energy production. The results demonstrate that proper turbine alignment and spacing significantly improve the efficiency, allowing the turbines to operate closer to their theoretical maximum efficiency. The findings highlight the critical role of integrating historical wind data with CFD simulations to optimize turbine placement and performance. This work offers a valuable framework for future windfarm designs, emphasizing the benefits of data-driven approaches in maximizing renewable energy generation and operational efficiency

Published

2024-09-17

How to Cite

Osadolor , A. O., Showole , A. O., Asamoah, G. A., & Eze , T. J. (2024). OPTIMIZING WIND FARM LAYOUTS USING HISTORICAL DATA AND COMPUTATIONAL FLUID DYNAMICS: A COMPUTATIONAL FRANDSEN WAKE MODEL AND DIFFERENTIAL EVOLUTION ALGORITHM. SADI International Journal of Science, Engineering and Technology (SIJSET), 11(3), 10–25. https://doi.org/10.5281/zenodo.13772577

Issue

Section

Original Peer Review Articles

References

Abdulwahab, I., Andrew, S., Rimamfate, G., Abdulwasiu, A., Umar, A. and Iliyasu, N.A. (2024). Optimization of the Offshore Wind Turbines Layout Using Cuckoo Search Algorithm. Journal of Techniques, 6(2), pp.90–99. doi: https://doi.org/10.51173/jt.v6i2.2585.

Al-Addous, M., Jaradat, M., Albatayneh, A., Wellmann, J. and Al Hmidan, S. (2020). The Significance of Wind Turbines Layout Optimization on the Predicted Farm Energy Yield. Atmosphere, [online] 11(1), 117. https://doi.org/10.3390/atmos11010117.

Antonini, E.G.A., Romero, D.A. and Amon, C.H. (2020). Optimal design of wind farms in complex terrains using computational fluid dynamics and adjoint methods. Applied Energy, 261, p. 114426. doi: 10.1016/j.apenergy.2019.114426.

Cao, L., Ge, M., Gao, X., Du, B., Li, B., Huang, Z. and Liu, Y. (2022). Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines. Applied Energy, 323, p. 119599. doi: 10.1016/j.apenergy.2022.119599.

Dhunny, A.Z., Lollchund, M.R. and Rughooputh, S.D.D.V. (2017). Wind energy evaluation for a highly complex terrain using Computational Fluid Dynamics (CFD). Renewable Energy, 101, 1–9. doi: 10.1016/j.renene.2016.08.032.

EERE (n.d.). How a Wind Turbine Works-Text Version. Energy Efficiency & Renewable Energy. Available at: https://www.energy.gov/eere/wind/how-wind-turbine-works-text-version#:~:text=Yaw%20System.

EERE (n.d.). How Do Wind Turbines Work? Energy Efficiency & Renewable Energy. Available at: https://www.energy.gov/eere/wind/how-do-wind-turbines-work#:~:text=Most%20commonly%2C%20they%20have%20three.

Energy Education (2018). Wind power-Energy Education. Retrieved from Energyeducation.ca. Available online: https://energyeducation.ca/encyclopedia/Wind_power.

Erisen, B. (2019). Wind Turbine Scada Dataset. Kaggle. Available online: https://www.kaggle.com/datasets/berkerisen/wind-turbine-scada-dataset.

Fuglsang, P. and Thomsen, K. (1998). Cost optimization of wind turbines for large-scale offshore windfarms. Retrieved from www.osti.gov. Available online: https://www.osti.gov/etdeweb/biblio/605630.

Harish, A. (2016). Wind Farm Optimization with Turbine Placement & CFD. SimScale. Available online: https://www.simscale.com/blog/optimize-wind-farms-cfd/.

Hartman, L. (2023). Wind Turbines: the Bigger, the Better. Energy.gov. Available online: https://www.energy.gov/eere/articles/wind-turbines-bigger-better

Herbert-Acero, J., Probst, O., Réthoré, P.-E., Larsen, G. and Castillo-Villar, K. (2014). A Review of Methodological Approaches for the Design and Optimization of Wind Farms. Energies, 7(11), 6930–7016, doi:10.3390/en7116930.

Hou, P., Hu, W., Soltani, M. and Chen, Z. (2015). Optimized Placement of Wind Turbines in Large-Scale Offshore Wind Farm Using Particle Swarm Optimization Algorithm. IEEE Transactions on Sustainable Energy, 6(4), pp.1272–1282. doi: https://doi.org/10.1109/tste.2015.2429912.

Hwang, P.-W., Wu, J.-H. and Chang, Y.-J. (2024). Optimization Based on Computational Fluid Dynamics and Machine Learning for the Performance of Diffuser-Augmented Wind Turbines with Inlet Shrouds. Sustainability, 16(9), 3648–3648, doi:10.3390/su16093648.

Kasper, D. (2023). Wind Energy and Power Calculations | EM SC 470: Applied Sustainability in Contemporary Culture. www.e-education.psu.edu. Available online: https://www.e-education.psu.edu/emsc297/node/649

Khanali, M., Ahmadzadegan, S., Omid, M., Keyhani Nasab, F. and Chau, K.W. (2018). Optimizing layout of wind farm turbines using genetic algorithms in Tehran province, Iran. International Journal of Energy and Environmental Engineering, 9(4), pp.399–411. doi: https://doi.org/10.1007/s40095-018-0280-x.

Kirchner-Bossi, N. and Porté-Agel, F. (2024). Wind farm power density optimization according to area size using a novel self-adaptive genetic algorithm. Renewable Energy, 220, 119524–119524. https://doi.org/10.1016/j.renene.2023.119524.

Letzgus, P., Guma, G. and Lutz, T. (2022). Computational fluid dynamics studies on wind turbine interactions with the turbulent local flow field influenced by complex topography and thermal stratification. Wind Energy Science, 7(4), 1551–1573, doi:10.5194/wes-7-1551-2022.

Liang, Z., & Liu, H. (2023). Layout Optimization Algorithms for the Offshore Wind Farm with Different Densities Using a Full-Field Wake Model. Energies, 16(16), 5916–5916, doi:10.3390/en16165916.

Mahoney, W.A., Parks, K., Wiener, G., Liu, Y., Myers, W.L., Sun, J., Luca Delle Monache, Hopson, T., Johnson, D.R. and Haupt, S. (2012). A Wind Power Forecasting System to Optimize Grid Integration. IEEE Transactions on Sustainable Energy, 3(4), pp.670–682. doi: https://doi.org/10.1109/tste.2012.2201758.

McKenzie, H. (2023). How To Optimize Location Planning For Wind Turbines. Carto.com. Available at: https://carto.com/blog/location-planning-for-wind-turbines#:~:text=A%20site%20should%20experience%20high [Accessed 5 Aug. 2024].

NZWEA (n.d.). How Wind Energy Works. New Zealand Wind Energy Association. Available online: https://www.windenergy.org.nz/wind-energy/the-facts

Pedersen, M.M. and Larsen, G.C. (2020). Integrated wind farm layout and control optimization. Wind Energy Science, 5(4), pp.1551–1566. doi: https://doi.org/10.5194/wes-5-1551-2020.

Peng, H., Zhu, W.D., Ma, H., Li, H., Zhang, R.-K. and Chen, K. (2023). Research on a random search algorithm for wind turbine layout optimization. Journal of Renewable and Sustainable Energy, 15(5), doi:10.1063/5.0159271.

Pillai, A.C., Chick, J., Khorasanchi, M., Barbouchi, S. and Johanning, L. (2017). Application of an offshore wind farm layout optimization methodology at Middelgrunden wind farm. Ocean Engineering, 139, 287–297. doi: 10.1016/j.oceaneng.2017.04.049.

Platis, A., Siedersleben, S.K., Bange, J., Lampert, A., Bärfuss, K., Hankers, R., Cañadillas, B., Foreman, R., Schulz-Stellenfleth, J., Djath, B., Neumann, T. and Emeis, S. (2018). First in situ evidence of wakes in the far field behind offshore wind farms. Scientific Reports, 8(1), doi:10.1038/s41598-018-20389-y.

Pollini, N. (2022). Topology optimization of wind farm layouts. Renewable Energy, 195, 1015–1027. doi: 10.1016/j.renene.2022.06.019.

Richmond, M., Antoniadis, A., Wang, L., Kolios, A., Al-Sanad, S. and Parol, J. (2019). Evaluation of an offshore wind farm computational fluid dynamics model against operational site data. Ocean Engineering, 193, p. 106579. doi: 10.1016/j.oceaneng.2019.106579.

Sanderse, B., Pijl, S.P. and Koren, B. (2011). Review of computational fluid dynamics models for wind turbine wake aerodynamics. Wind Energy, 14(7), 799–819. https://doi.org/10.1002/we.458

Sharaf, S. (2023). Offshore Wind Wake Effects Are Real: We Should Plan for Them | Synapse Energy. www.synapse-energy.com. Available at: https://www.synapse-energy.com/offshore-wind-wake-effects-are-real-we-should-plan-them#:~:text=A%20wind%20turbine%20extracts%20kinetic [Accessed 26 Jul. 2024].

Sohoni, V., Gupta, S.C. and Nema, R.K. (2016). A Critical Review on Wind Turbine Power Curve Modelling Techniques and Their Applications in Wind Based Energy Systems. Journal of Energy, 2016, 1–18. https://doi.org/10.1155/2016/8519785.

Stanley, A.P.J. and Ning, A. (2019). Massive simplification of wind farm layout optimization problem. Wind Energy Science, 4(4), pp.663–676. doi: https://doi.org/10.5194/wes-4-663-2019.

Stanley, A. P. J., Roberts, O., Lopez, A., Williams, T. and Barker, A. (2022). Turbine scale and seating considerations in wind plant layout optimization and their implications for capacity density. Energy Reports, 8, 3507–3525. doi: 10.1016/j.egyr.2022.02.226.

Sun, H., Yang, H. and Gao, X. (2019). Investigation into spacing restriction and layout optimization of wind farm with multiple types of wind turbines. Energy, 168, pp.637–650. doi: https://doi.org/10.1016/j.energy.2018.11.073.

Tabas, D., Fang, J. and Porté-Agel, F. (2019). Wind Energy Prediction in Highly Complex Terrain by Computational Fluid Dynamics. Energies, 12(7), p. 1311. doi:10.3390/en12071311.

Tang, X.-Y., Yang, Q., Stoevesandt, B. and Sun, Y. (2022). Optimization of wind farm layout with optimum coordination of turbine cooperation. Computers and Industrial Engineering, 164, p. 107880. doi: 10.1016/j.cie.2021.107880.

Wu, X., Hu, W., Huang, Q., Chen, C., Chen, Z. and Blaabjerg, F. (2019). Optimized Placement of Onshore Wind Farms Considering Topography. Energies, 12(15), pp. 2944. https://doi.org/10.3390/en12152944.

Wu, Y.-K., Lee, C.-Y., Chen, C.-R., Hsu, K.-W. and Tseng, H.-T. (2014). Optimization of the Wind Turbine Layout and Transmission System Planning for a Large-Scale Offshore WindFarm by AI Technology. IEEE Transactions on Industry Applications, 50(3), 2071–2080, doi:10.1109/tia.2013.2283219.